Math, asked by Vikash4084, 1 year ago

The equation e^{sinx} - e^{-sinx} - 4 = 0 has :
(a) infinite number of real roots
(b) no real roots
(c) exactly one real root
(d) exactly four real roots

Answers

Answered by Anonymous
2

HEYA \:  \\  \\ e {}^{ \sin(x) }  - e {}^{ -  \sin(x) }  = 4 \\  \\ put \:  \:  e {}^{ \sin(x) }   = z  \:  \: we \: have \: \\  \\ z {}^{2}  - 4z - 1 = 0 \\  \\ z = 2 +  \sqrt{5}  \\ or \\ z = 2 -  \sqrt{5}  \\  \\ e {}^{ \sin(x) }  = 2 +  \sqrt{5}  \\  \\ taking \:  ln_{e} \: on \: both \: sides \: we \: have \:  \\  \\  \sin( x)  = ln(2 +  \sqrt{5} ) \\  \\  \sin(x)  = 1.46  \:  \:  \:  \:  (absurd \: ) \\ becoz \: range \:  \: of \: sinx \: is \: (  -  1 \: to \:   + 1) \\  \\ similarly \:  \\  \sin(x)  =   ln(2 -  \sqrt{5} ) \\  \\  \sin(x)  =  ln(- 0.23)  \:  \: (absurd \: ) \\ becoz \: domain \: of  \\ \: ln \: is \: set \: of \: positive \: real \: numbers \:  \\  \\ so \: given \: equation \: has \: no \: real \: roots \\ option \: b \: is \: correct

Similar questions