Math, asked by Anonymous, 3 months ago

The equation
 log_{2}( log_{1 \div 2}( |x|  - 1) )  > 0
has
(a) . no solution
(b) . infinite integral solution
(c) . two integral solution
(d) . infinite solutions​

Answers

Answered by Abhinav1783
2

Answer:

here's your answer

Step-by-step explanation:

hope it was help full

Attachments:
Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\: log_{2}( log_{ \frac{1}{2} }( |x| - 1) ) > 0

Firstly, inequality to be defined,

\boxed{ \rm{  \: x \:  \ne \: 1,0 \: and \:  -  \: 1}} -  -  - (1)

Now Consider

\rm :\longmapsto\: log_{2}( log_{ \frac{1}{2} }( |x| - 1) ) > 0

We know that,

 \purple{\boxed{ \bf{  log_{x}(y) > z \: then \: y >  {x}^{z} \: iff \: x > 1}}}

So, given inequality reduced to

\rm :\longmapsto\: log_{ \frac{1}{2} }( |x| - 1)  >  {2}^{0}

\rm :\longmapsto\: log_{ \frac{1}{2} }( |x| - 1)  >  1

We know that,

 \purple{\boxed{ \bf{  log_{x}(y) > z \: then \: y  <   {x}^{z} \: iff \: 0 < x  <  1}}}

So, above inequality reduce to

\rm :\longmapsto\: |x| - 1 < \dfrac{1}{2}

\rm :\longmapsto\: |x|  < \dfrac{1}{2}  + 1

\rm :\longmapsto\: |x|  < \dfrac{1 + 2}{2}

\rm :\longmapsto\: |x|  < \dfrac{3}{2}

We know,

 \purple{\boxed{ \rm{  |x| < y\bf\implies \: - y < x < y}}}

So,

\rm :\implies\: - \dfrac{3}{2}  < x < \dfrac{3}{2}  -  -  -  - (2)

Combine equation (1) and (2), we get

\bf\implies \:x \in \bigg( - \dfrac{3}{2}, - 1\bigg)\cup ( - 1,0)\cup (0,1) \cup \bigg(1,\dfrac{3}{2}  \bigg)

  • So, option (d) is correct

Similar questions