The equation whose roots are multiplied by 3 of those of 2x^2 + 3x – 1=0 is
Answers
Answer:
Let the roots of 2x
2
+3x−1=0 be α and β
\textbf{To find:}To find:
\text{The quadratic equation whose roots are $3\alpha$ and $3\beta$}The quadratic equation whose roots are 3α and 3β
\textbf{Solution:}Solution:
\text{Consider,}Consider,
2x^2+3x-1=02x
2
+3x−1=0
\text{Sum of the roots}=\dfrac{-3}{2}Sum of the roots=
2
−3
\implies\bf\alpha+\beta=\dfrac{-3}{2}⟹α+β=
2
−3
\text{Product of the roots}=\dfrac{-1}{2}Product of the roots=
2
−1
\implies\bf\alpha\,\beta=\dfrac{-1}{2}⟹αβ=
2
−1
\text{Now, we form a quadratic whose roots are $3\alpha$ and $3\beta$}Now, we form a quadratic whose roots are 3α and 3β
3\alpha+3\beta=3(\alpha+\beta)=3(\dfrac{-3}{2})=\dfrac{-9}{2}3α+3β=3(α+β)=3(
2
−3
)=
2
−9
3\alpha{\times}3\beta=9(\alpha,\beta)=9(\dfrac{-1}{2})=\dfrac{-9}{2}3α×3β=9(α,β)=9(
2
−1
)=
2
−9
\textbf{The required equation is}The required equation is
x^2-(3\alpha+3\beta)x+(3\alpha\,3\beta)=0x
2
−(3α+3β)x+(3α3β)=0
x^2-(\dfrac{-9}{2})x+(\dfrac{-9}{2})=0x
2
−(
2
−9
)x+(
2
−9
)=0
x^2+\dfrac{9}{2}x-\dfrac{9}{2}=0x
2
+
2
9
x−
2
9
=0
\implies\boxed{\bf\,2x^2+9x-9=0}⟹
2x
2
+9x−9=0