Math, asked by kashyapdeepak78557, 9 months ago

The equation whose roots are twice the reciprocal of the roots of the quadratic equation x2– px+1=0 is

Answers

Answered by mysticd
6

 Let \: \alpha \:and \: \beta \: are \: two \:roots

 of \: the \: Quadratic \: equation

 i) \alpha + \beta = \frac{- Coefficient \: x}{Coefficient \:x^{2}}

 = \frac{-(-p)}{1}

 = p \: --(1)

 ii) \alpha  \beta = \frac{Constant \:term}{Coefficient \:x^{2}}

 = \frac{1}{1}

 = 1\: --(2)

 Here, \frac{2}{\alpha} \: and \: \frac{2}{\beta}\:are

 roots\: of \: a \: Quadratic \: equation.

 iii) Sum \:of \:the \:roots

 = \frac{2}{\alpha } + \frac{2}{\beta }

 = 2\Big( \frac{1}{\alpha } + \frac{1}{\beta} \Big)

 = 2 \Big( \frac{\beta + \alpha}{\alpha \beta } \Big)

 = 2 \times \frac{p}{1}\: [ From \: (1) \:and \:(2) ]

 = 2p \: --(3)

 iv) Product \:of \:the \:roots

 = \frac{2}{\alpha } \times  \frac{2}{\beta }

 = \frac{4}{\alpha \beta}

 = \frac{4}{1}\: [ From \:(2) ]

 = 4\: --(4)

 \red{ Required \: Quadratic \: Equation : }

 \blue{ k[ x^{2} - \Big( \frac{2}{\alpha } + \frac{2}{\beta }\Big) x + \frac{1}{\alpha \beta }]=0 }

 \implies  k( x^{2} - 2px + 4 ) = 0

 If \: k = 1 \: then \: x^{2} - 2px + 4 = 0

Therefore.,

 \red{ Required \: Quadratic \: Equation : }

 \green { \: x^{2} - 2px + 4 = 0 }

•••♪

Similar questions