the equation x(x - 1) - (m + 1)/ (x - 1)(m - 1) = x/m, the roots are equal when m =
Answers
Answer:
the equation x(x - 1) - (m + 1)/ (x - 1)(m - 1) = x/m, the roots are equal when m =-1/2
Step-by-step explanation:
( x(x - 1) - (m + 1))/ (x - 1)(m - 1) = x/m
=> mx(x-1) - m(m+1) = x(x-1)(m-1)
=> x(x-1)(m-(m-1) - m(m+1) = 0
=> x(x-1) - m(m+1) = 0
=> x² - x - m(m+1) = 0
rootrs are equal if
D = 0 = b² - 4ac
(-1)² - 4(1)(-m(m+1)) = 0
=> 1 + 4m² + 4m = 0
=> 4m² + 2m + 2m + 1 = 0
=> 2m(2m +1) + 1(2m+1) = 0
=> (2m+1)² = 0
=> m = -1/2
Answer:
the equation x(x - 1) - (m + 1)/ (x - 1)(m - 1) = x/m, the roots are equal when m =-1/2
Step-by-step explanation:
( x(x - 1) - (m + 1))/ (x - 1)(m - 1) = x/m
=> mx(x-1) - m(m+1) = x(x-1)(m-1)
=> x(x-1)(m-(m-1) - m(m+1) = 0
=> x(x-1) - m(m+1) = 0
=> x² - x - m(m+1) = 0
rootrs are equal if
D = 0 = b² - 4ac
(-1)² - 4(1)(-m(m+1)) = 0
=> 1 + 4m² + 4m = 0
=> 4m² + 2m + 2m + 1 = 0
=> 2m(2m +1) + 1(2m+1) = 0
=> (2m+1)² = 0
=> m = -1/2