The equation x2ydx-(x3+y3)dy= 0 is homogeneous equation
Answers
Answered by
24
The given homogeneous differential equation is ....
if we assume y/x = t
y = xt
dy/dx = t + xdt/dx
then, t/(1 + t³) = t + x.dt/dx
t/(1 + t³) - t = xdt/dx
(t - t - t⁴)/(1 + t³) = x dt/dx
-t⁴/(1 + t³) = x dt/dx
dx/x = -(1 + t³)/t⁴ dt
lnx = -t^-4 dt - dt/t
lnx = -t^-3/-3 - lnt + C
lnx = 1/3t³ - lnt + C
now, put t = y/x
so, lnx = 1/3(y/x)³ - lny/x + C
or, lnx = x³/3y³ - lny + lnx + C
hence, -x³/3y³ + lny + C = 0
if we assume y/x = t
y = xt
dy/dx = t + xdt/dx
then, t/(1 + t³) = t + x.dt/dx
t/(1 + t³) - t = xdt/dx
(t - t - t⁴)/(1 + t³) = x dt/dx
-t⁴/(1 + t³) = x dt/dx
dx/x = -(1 + t³)/t⁴ dt
lnx = -t^-4 dt - dt/t
lnx = -t^-3/-3 - lnt + C
lnx = 1/3t³ - lnt + C
now, put t = y/x
so, lnx = 1/3(y/x)³ - lny/x + C
or, lnx = x³/3y³ - lny + lnx + C
hence, -x³/3y³ + lny + C = 0
Similar questions