Math, asked by kimi07, 3 months ago

The equation y=2x^2 + 4x + 17 is in the form of a( x + b)^2+c.

Sketch the graph.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

The given equation is

\rm :\longmapsto\:y =  {2x}^{2}  + 4x + 17

\rm :\longmapsto\:y =  {2x}^{2}  + 4x + 2 + 15

\rm :\longmapsto\:y = 2( {x}^{2} + 2x + 1) + 15

\rm :\longmapsto\:y = 2(x + 1)^{2} + 15

1. Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:y = 2 {(0 + 1)}^{2}  + 15

\rm :\longmapsto\:y = 2 + 15

\bf :\implies\:y = 17

2. Substituting 'x = 1' in the given equation, we get

\rm :\longmapsto\:y = 2 {(1 + 1)}^{2} + 15

\rm :\longmapsto\:y = 2 \times 4 + 15

\rm :\longmapsto\:y = 8 + 15

\bf\implies \:y = 23

3. Substituting 'x = - 1' in the given equation, we get

\rm :\longmapsto\:y = 2 {( - 1 + 1)}^{2}  + 15

\rm :\longmapsto\:y = 2 \times 0 + 15

\rm :\longmapsto\:y = 15

4. Substituting 'x = 2' in the given equation, we get

\rm :\longmapsto\:y = 2 {(2 + 1)}^{2}  + 15

\rm :\longmapsto\:y = 2 \times 9 + 15

\rm :\longmapsto\:y = 18 + 15

\bf\implies \:y = 33

5. Substituting 'x = - 2' in the given equation, we get

\rm :\longmapsto\:y = 2 {( - 2 + 1)}^{2}  + 15

\rm :\longmapsto\:y = 2 + 15

\bf\implies \:y = 17

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 17 \\ \\ \sf 1 & \sf 23 \\ \\ \sf 2 & \sf 33\\ \\ \sf  - 1 & \sf 15\\ \\ \sf  - 2 & \sf 17 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

Attachments:
Similar questions