The equations x² - 4x + k = 0 and x² + kx - 4 = 0, where k is a real number, have exactly one common root. What is the value of k?
See the answer is 03.
I just want detailed solution...
10 points.....
Answers
Answered by
21
Subtract the 2nd equation from the first equation. Eliminate x^2 term.
Let x be the common root.
We get. - (k+4) x + k+4 = 0
x = 1 clearly.
Substitute x = 1 in the first equation to get. 1- 4 + k = 0
k = 3.
Let x be the common root.
We get. - (k+4) x + k+4 = 0
x = 1 clearly.
Substitute x = 1 in the first equation to get. 1- 4 + k = 0
k = 3.
kvnmurty:
Click on the thanks button above please
Answered by
14
Hello
----------------------------------------------------------------------------------------------
x²-4x+k=0.................1
x²+kx-4=0....................2
solving 1&2
x²-4x+k=0
x²+kx-4=0
- - +
--------------
(-4k)x+4k=0
∴x=1
substitute in eqn 1
x²-4x+k=0
1-4+k=0
-3+k=0
k=3
---------------------------------------------------------------------------------------------
hope it's help u
----------------------------------------------------------------------------------------------
x²-4x+k=0.................1
x²+kx-4=0....................2
solving 1&2
x²-4x+k=0
x²+kx-4=0
- - +
--------------
(-4k)x+4k=0
∴x=1
substitute in eqn 1
x²-4x+k=0
1-4+k=0
-3+k=0
k=3
---------------------------------------------------------------------------------------------
hope it's help u
Similar questions
Science,
8 months ago
Computer Science,
8 months ago
Science,
8 months ago
Math,
1 year ago
Environmental Sciences,
1 year ago
English,
1 year ago