Physics, asked by kkhemalatha7683, 9 months ago

the equivalent resistance of three resistors of 4 ohm, 5 ohm, 20 ohm when connected in series

Answers

Answered by Anonymous
52

Answer:

 \boxed{\mathfrak{Equivalent \ resistance \ (R_{eq}) = 29 \ \Omega}}

Explanation:

Equivalent resistance in series connection:

 \boxed{ \bold{R_{eq} = R_1 + R_2 + R_3 + ... + R_n}}

According to the question:

 \sf R_1 = 4  \sf \Omega

 \sf R_2 = 5  \sf \Omega

 \sf R_3 = 20  \sf \Omega

So,

 \sf \implies R_{eq} = 4 + 5 + 20 \\  \\ \sf \implies R_{eq} = 29 \:  \Omega

Additional information:

Equivalent resistance in parallel combination:

  \frac{1}{R_{eq} }  =  \frac{1}{R_{1} }  +  \frac{1}{R_{2} }  +  \frac{1}{R_{3} }  + ... +  \frac{1}{R_{n} }

Answered by ItzDαrkHσrsє
4

\large{\underline{\underline{\sf{Given-}}}}

\sf{1) \:There \: is \: Equivalent \: Resistance \: in \: connection}

\sf{2) \:There \: are \: 3 \: resistors \: connected \: in \: series}

  • \sf{R¹ = 4Ω}

  • \sf{R² = 5Ω}

  • \sf{R³ = 20Ω}

\large{\underline{\underline{\sf{To \: Find-}}}}

  • \sf{Required \: Resistance}

\large{\underline{\underline{\sf{Solution-}}}}

We know that, Equivalent Resistance in series connection :

\large{\boxed{\sf{Req = R¹ + R² + R³}}}

\sf{Placing \: Values,}

\implies \sf{Req = 4 + 5 + 20}

\implies \sf{Req = 29}

\large{\boxed{\sf{29Ω}}}

\sf{Required \: Resistance \: is \: 29Ω}

Similar questions