Physics, asked by sudhakarpatil674, 11 months ago

The escape velocity of a body on an imaginary planet which has half the radius of earth and double the average density of earth, is (ve is escape velocity on earth)

Answers

Answered by Anonymous
57

Answer:

Escape \:  Velocity \:from \: imaginary \: planet \: (v_{p}) =  \frac{v_{e}}{ \sqrt{2} }

Explanation:

 =  > \rho =  \frac{M}{V}  \\  \\ =  >  M = \rho V \\  \\  =  > M = \rho \times\frac{4}{3} \pi {R}^{3}  \\  \\ =   >  M =  \frac{4}{3} \rho  \pi {R}^{3}\\  \\  \\  Escape \:  Velocity \: from \: earth \: (v_{e} )=\sqrt{ \frac{2GM}{R} }  \\  \\  =  > v_{e} =  \sqrt{ \frac{2G \times\frac{4}{3} \rho  \pi {R}^{3}}{R} } \\  \\  =  > v_{e} =  \sqrt{ \frac{2G \times4 \rho  \pi {R}^{2}}{3} } \\  \\  =  > v_{e} =  \sqrt{ \frac{8G \rho  \pi {R}^{2}}{3} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ....Eq_{1}\\  \\  \\  \rho = average \: density \: of \: earth \\ R = radius \: of \: earth \\ G = gravitational \: constant \\  \\

 According \: to \: the \: question \: on \: an \: imaginary  \: planet \\   \\ R_{p}  =  \frac{1}{2} R \\  \rho_{p}  = 2\rho  \\  \\ Escape \:  Velocity \:from \: imaginary \: planet \: (v_{p} ) =  \sqrt{ \frac{8G \rho_{p}  \pi {R_{p}}^{2}}{3} } \\  \\  =  > v_{p} =  \sqrt{ \frac{8G \times 2 \rho \pi { (\frac{1}{2} R)}^{2}}{3} } \\  \\  =  > v_{p} =  \sqrt{ \frac{8G \times 2 \rho \pi  \times { \frac{1}{4} R}^{2}}{3} } \\  \\  =  > v_{p} =  \sqrt{ \frac{8G \times  \rho \pi  \times { \frac{1}{2} R}^{2}}{3} } \\  \\  =  > v_{p} =  \sqrt{ \frac{4G \rho \pi { R}^{2}}{3} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ....Eq_{2} \\  \\

 Dividing \: Eq_{1} \: by \: Eq_{2} , \: we\: get \\ \\  =  >   \frac{v_{e}}{v_{p}}  =  \frac{  \sqrt{ \frac{8G \rho  \pi {R}^{2}}{3} }}{\sqrt{ \frac{4G  \rho \pi { R}^{2}}{3} }}  \\  \\  =  >  \frac{v_{e}}{v_{p}}  = \sqrt{ \frac{8G \rho  \pi {R}^{2}}{3} } \times   \sqrt{ \frac{3}{4G  \rho \pi { R}^{2}} }   \\  \\  =  >  \frac{v_{e}}{v_{p}} =  \sqrt{2}  \\  \\  =  > v_{p} =  \frac{v_{e}}{ \sqrt{2} }

Answered by nirman95
16

Answer:

Given:

Planet has ½ radius and double density as that of Earth.

To find :

Escape Velocity in that planet in terms of escape Velocity of Earth.

Concept:

First we need to express Escape Velocity in terms of density and radius. This can be easily done by using mass as a product of volume and density .

 \boxed{ \red{ \huge{esc. \: v =  \sqrt{ \dfrac{2Gm}{r} }  }}}

Considering planets to be spheres and having a constant density :

 \red{ \large{esc. \: v =  \sqrt{ \dfrac{2G (\frac{4}{3} \pi {r}^{3}  \times  \rho)}{r} }  }}

 \red{ \large{ =  > esc. \: v =  \sqrt{ \dfrac{8  G  \pi {r}^{2}  \times  \rho}{3} }  }}

Keeping all other quantities as constant , we can say that :

 \boxed{ \blue{ \huge{esc. \: v \:  \propto \: (r \sqrt{ \rho} )}}}

Calculation:

Taking ratio :

 =  >  \dfrac{v_{p}}{v_{e}}  =  \dfrac{ \dfrac{r}{2} \sqrt{2 \rho}  }{r \sqrt{ \rho} }

 =  > v_{p} =  \dfrac{v_{e}}{ \sqrt{2} }

So final answer :

 \boxed{ \boxed{ \green{ \huge{ \sf{ \bold{ v_{p} =  \dfrac{v_{e}}{ \sqrt{2} } }}}}}}

Similar questions