Math, asked by pallavipoman2002, 7 days ago

the euation of plane passing through thepoints (-1,1,1),(2,-1,3) and (2,1,0,) is​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

Plane passes through the points (-1,1,1),(2,-1,3) and (2,1,0).

Let assume that the direction ratios of the plane be ( a, b, c ).

Let the equation of plane which passes through the point ( - 1, 1, 1 ) having direction ratios ( a, b, c ) be

\red{\rm :\longmapsto\:a(x + 1) + b(y - 1) + c(z - 1) = 0 -  - (1)}

Since, plane (1) passes through ( 2, - 1, 3 )

\rm :\longmapsto\:a(2 + 1) + b( - 1 - 1) + c(3 - 1) = 0

\rm :\longmapsto\:3a  - 2b + 2c = 0  -  -  - (2)

Also, plane (1) passes through ( 2, 1, 0 ).

\rm :\longmapsto\:a(2 + 1) + b(1 - 1) + c(0 - 1) = 0

\rm :\longmapsto\:3a   - c = 0

\bf\implies \:c = 3a -  -  - (3)

Substituting the value of c in equation (2), we get

\rm :\longmapsto\:3a  - 2b + 2(3a) = 0

\rm :\longmapsto\:3a  - 2b + 6a= 0

\rm :\longmapsto\:9a  - 2b= 0

\bf :\longmapsto\:9a= 2b -  - (4)

From equation (3), on multiply by 3, we get

\bf\implies \:3c = 9a -  -  - (5)

Now, Equating equation (4) and equation (5), we get

\rm :\longmapsto\:9a = 2b = 3c

Let assume that,

\rm :\longmapsto\:9a = 2b = 3c = k

\rm :\longmapsto\:a = \dfrac{k}{9}

\rm :\longmapsto\:b = \dfrac{k}{2}

\rm :\longmapsto\:c = \dfrac{k}{3}

On substituting the values of a, b, c in equation (1), we get

\red{\rm :\longmapsto\:\dfrac{k}{9} (x + 1) + \dfrac{k}{2}(y - 1) + \dfrac{k}{3}(z - 1) = 0 -  - (1)}

can be rewritten as

\red{\rm :\longmapsto\:\dfrac{1}{9} (x + 1) + \dfrac{1}{2}(y - 1) + \dfrac{1}{3}(z - 1) = 0}

\red{\rm :\longmapsto\:2(x + 1) + 9(y - 1) + 6(z - 1) = 0}

\red{\rm :\longmapsto\:2x +2 + 9y - 9 + 6z - 6 = 0}

\red{\rm :\longmapsto\:2x + 9y + 6z - 13 = 0}

Similar questions