Math, asked by shyamalDass, 1 year ago

The exact value of cosec10 - 4sin70

Answers

Answered by krazyloverankush
37
Cosec10 - 4sin70
= (1/sin10) - [4 sin (90-20)]
=(1/sin10) - (4 cos 20)
= (1/sin10)(1 - 4cos20sin10)

= (1/sin10)[1 - 2(2cos20sin10)]
= (1/sin10)[1 - 2(sin30 - sin10)]
= (1/sin10)[1 - 2(1/2 - sin10)]
= (1/sin10)[1 - 1 + 2sin10]
= (1/sin10)[2sin10]
= 2  Ans.
Answered by pinquancaro
17

Answer:

The exact value of the expression is \csc 10-4\sin 70=2

Step-by-step explanation:

Given : Expression \csc 10-4\sin 70

To find : The exact value of expression ?

Solution :

Expression \csc 10-4\sin 70

Re-write as,

=\frac{1}{\sin 10}-4\sin (90-20)

=\frac{1}{\sin 10}-4\cos 20

=\frac{1}{\sin 10}(1-4\cos 20\sin10)

=\frac{1}{\sin 10}(1-2(2\cos 20\sin10))

Using formula, 2\cos A\sin B=\sin (A+B)-\sin (A-B)

=\frac{1}{\sin 10}(1-2(\sin 30-\sin 10))

=\frac{1}{\sin 10}(1-2(\frac{1}{2}-\sin 10))

=\frac{1}{\sin 10}(1-1+2\sin 10)

=\frac{1}{\sin 10}(2\sin 10)

=2

Therefore, The exact value of the expression is \csc 10-4\sin 70=2

Similar questions