The exhaustive set of values of a' for which the equation sin^4 x+cos^4 x-sin2x +a=0 has a solution is
Answers
Answered by
2
Answer:
Step-by-step explanation:
sin
4
x+cos
4
x+sin2x+α=0
⇒(sin
2
x+cos
2
x)
2
−2sin
2
xcos
2
x+sin(2x)+α=0
⇒1−2sin
2
xcos
2
x+sin(2x)+α=0⇒1−
2
sin
2
(2x)
+sin(2x)+α=0
⇒2−sin
2
(2x)+2sin(2x)+2α=0
⇒sin
2
(2x)−2sin(2x)−(2α+2)=0
Let y=sin2x, so that y=[−1,1], \sin ce −1≤sin2x≤1
Thus, y
2
−2y−(2α+2)=0
⇒y=1±
3+2a
But, −1≤y≤1, so:
⇒−1≤1±
3+2a
≤1
⇒−2≤±
3+2a
≤0
\sin ce, the range is from -2 to 0, then ignore the positive root
⇒−2≤−
3+2a
≤0
⇒0≤3+2a≤4
⇒−3≤2a≤1
⇒−
2
3
≤a≤
2
1
Therefore, Answer is −
2
3
≤a≤
2
1
Similar questions
Math,
22 days ago
Math,
1 month ago
English,
1 month ago
Math,
9 months ago
Business Studies,
9 months ago