the expression 2x³ + bx² - cx + d leave the same remainder when divided by X + 1 or x - 2 or 2x- 1 find b and c
it is from ch -3 class 10th
u can use elimination method, substitution method or cross multiplication method
the best answer will be marked brainest
Answers
Answered by
112
Anonymous:
okk
Answered by
49
{hence it is x-2=0, x=2
f(2)= 2(2)^3+b(2)^2-c(2)+d
= 16+4b-2c+d }
{hence it is 2x-1 =0, x= 0.5
f(0.5)= 2(0.5)^3+b(0.5)^2-c(0.5)+d
= 0.25 + 0.25b - 0.5c+d }
{thus , remainder, conclude that:
{-2+b+c+d=16+4b-2c+d=0.25+ 0.25b - 0.5c+d }
[-2+b+c=16+4b-2c=0.25+ 0.25b - 0.5c }
[[[[2 equation]]]]]
{-2+b+c=16+4b-2c}
also.. below .
{16+4b-2c=0.25+ 0.25b - 0.5c }
From first..
{-2+b+c=16+4b-2c }
{b+c= 18+4b-2c}
{0=18+3b-3c }
{3c=18+3b }
{c= 6+b}
[[[[From second]]]
{{16+4b-2c=0.25+ 0.25b - 0.5c }}
{{64+16b-8c= 1+b-2c}
{63+15b= 6c}
{Substitute now here 3 into 4}}
{63+15b= 6( 6+b) }
{63+ 15b= 36+6b }
{9b= -27 }
{b= -3 }
[Substitute b= -3 into ]
{c= 6-3 }
{c=3 }
{Therefore,now here}
====> 2x^3+bx^2-cx+d ====> 2x^3 -3x^2-3x+ d
{Since it is x+2=0, x= -2}
{(-2) = 2x^3 -3x^2-3x+ d }
===> 2(-2)^3 -3(-2)^2-3(-2)+ d
===> -16 -12 +6+d
{As now is (x) is divisible by x+2, it implies that }
[-16 -12 +6+d = 0]
{{d=22}}
===>hence the answer is { b= -3, c=3, d= 22}
hence proved:)
hope it helps:--
T!—!ANKS!!!
Similar questions