Math, asked by aymanrezaa0206, 7 months ago

The expression (a + 1)x3 + (2 – 3a)x2 – (3a – 1)x +
2a – 13 has a factor x – 3. Find the value of a and
hence find the other two factors of the expression.​

Answers

Answered by ayaana27
1

Answer:

Let p(x) = x3 + ax2 + bx +6

(x-2) is a factor of the polynomial x3 + ax2 + b x +6

p(2) = 0

p(2) = 23 + a.22 + b.2 +6 =8+4a+2b+6 =14+ 4a+ 2b = 0

7 +2 a +b = 0

b = - 7 -2a -(i)

x3 + ax2 + bx +6 when divided by (x-3) leaves remainder 3.

p(3) = 3

p(3) = 33 + a.32 + b.3 +6= 27+9a +3b +6 =33+9a+3b = 3

11+3a +b =1 => 3a+b =-10 => b= -10-3a -(ii)

Equating the value of b from (ii) and (i), we have

(- 7 -2a) = (-10 - 3a)

a = -3

Substituting a = -3 in (i), we get

b = - 7 -2(-3) = -7 + 6 = -1

Thus the values of a and b are -3 and -1 respectively.

Satisfied with this answer

Similar questions