Physics, asked by ajith4625, 11 months ago

The expression for rotational kinetic energy is​

Answers

Answered by ShivamKashyap08
3

{ \huge \bf { \mid{ \overline{ \underline{Question}}} \mid}}

The expression for rotational kinetic energy is?

\huge{\bold{\underline{\underline{Answer}}}}

\huge{\bold{\underline{Given:-}}}

  • Let I be the Moment of Inertia.
  • Let ω be the Angular velocity.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

Let us Consider a rigid body rotating with a constant angular velocity "ω" about an axis.

As the body rotates, all the particles will be in uniform circular motion.

Kinetic energy of 1st Particle,

\large{\tt K.E_1 = \dfrac{1}{2}mv^2}

But we know,

v = rω,

Substituting it,

\large{\tt \leadsto K.E_1 = \dfrac{1}{2} \times m_1 \times (r_1 \omega)^2}

(As mass , & Radius will vary for each particle)

\large{ \leadsto{\underline{\tt K.E_1 = \dfrac{1}{2} \times m_1 \times r_1^2 \: \omega^2}}}

Similarly Kinetic energy of 2nd Particle.

\large{\tt K.E_2 = \dfrac{1}{2}mv^2}

But we know,

v = rω,

Substituting it,

\large{\tt \leadsto K.E_2 = \dfrac{1}{2} \times m_2 \times (r_2 \omega)^2}

(As mass & Radius will vary for each particle)

\large{ \leadsto {\underline{\tt K.E_2 = \dfrac{1}{2} \times m_2 \times r_2^2 \: \omega^2}}}

Note:-

  • Angular velocity will be same

\rule{300}{1.5}

\rule{300}{1.5}

Kinetic energy of the body will be..

\large{\boxed{\tt K.E_R = K.E_1 + K.E_2 + ..... + K.E_n}}

Substituting the values,

\large{\tt \leadsto K.E_R =  \dfrac{1}{2}. m_1 . r_1^2 \: \omega^2 + \dfrac{1}{2}. m_2. r_2^2 \: \omega^2 + ... +\dfrac{1}{2}  m_n  r_n^2 \: \omega^2}

\large{\tt \leadsto K.E_R =  \dfrac{1}{2} . \omega^2 \bigg[m_1 . r_1^2  +  m_2. r_2^2  + ... + m_n  r_n^2 \bigg] }

\large{\tt \leadsto K.E_R = \dfrac{1}{2} . \omega^2 \bigg[\displaystyle \tt \sum^N_{i=1}m_ir_i^2 \bigg]}

As we know,

\large{\leadsto \displaystyle \tt \sum^N_{i=1}m_ir_i^2 = I (Moment \: of \: Inertia)}

The equation becomes,

\huge{\boxed{\boxed{\tt K.E_R = \dfrac{1}{2}I \omega^2}}}

Hence derived!

\rule{300}{1.5}

Similar questions