Math, asked by thomaskdkurisinkal88, 8 months ago

The expression for the sum to 'n' terms of some Arithmetic Sequence are given beliw. Find the 'nth' term of each

i)n^2+2n
ii) n^2- 2n​

Answers

Answered by VishnuPriya2801
102

Answers:-

1) Given:

Sum of first n terms = n² + 2n

We know that,

Sum of first n terms = n/2 * [ a + l ]

Where,

  • a is first term
  • l is nth or last term.

Substitute n = 1 to find the sum of first 1 terms i.e., first term (a) of the AP.

→ S₁ = a = (1)² + 2(1)

→ a = 1 + 2

→ a = 3

Hence,

→ n/2 * [ a + l ] = n² + 2n

→ a + l = n(n + 2) * 2/n

→ a + l = 2n + 4

→ l = 2n + 4 - a

→ l = 2n + 4 - 3

→ l = 2n + 1

Hence, the nth term is 2n + 1.

2) Given:

S(n) = n² - 2n

→ S₁ = a = (1)² - 2(1)

→ a = - 1

Hence,

→ n/2 * [ - 1 + l ] = n² - 2n

→ l - 1 = n(n - 2) * 2/n

→ l - 1 = 2n - 4

→ l = 2n - 4 + 1

→ l = 2n - 3

Hence, the nth term is 2n - 3.

Answered by rocky200216
75

\bf{\gray{\underbrace{\blue{GIVEN:-}}}}

  • The sum of nth term,

  1. n² + 2n
  2. n² - 2n

\bf{\gray{\underbrace{\blue{TO\:FIND:-}}}}

  • The nth term .

\bf{\gray{\underbrace{\blue{SOLUTION:-}}}}

✨ The form of " \bf{S_n}" in the A.P is,

\huge\purple\checkmark \bf\green{S_n\:=\:\dfrac{n}{2}\:[a_1\:+\:a_n]\:}

Where,

  • \bf{a_1} = First term of A.P .

  • \bf{a_n} = nth term of A.P .

\rule{200}2

[1]

\bf\begin{tabular}{|   c   |   c   |   c   |}n & S_n = n^2 + 2n & Series  \\  \cline{1 - 3}1 & S_1 = 3 & a_1 = 3  \\  \cline{1 - 3}2 & S_2 = 8 & a_2 = 8 - 3 = 5  \\  \cline{1 - 3}3 & S_3 = 15 & a_3 = 15 - 8 = 7  \\  \cline{1 - 3}4 & S_4 = 24 & a_4 = 24 - 15 = 9  \\  \cline{1 - 3}\end{tabular}

\orange\bigstar \bf\pink{A.P\:=\:3\:,\:5\:,\:7\:,\:9\:,\:....\:}

\bf{\implies\:S_n\:=\:n^2\:+\:2n\:}

[Note :- Taking common \bf{\dfrac{n}{2}} from the above equation .]

\rm{\implies\:S_n\:=\:\dfrac{n}{2}\:[2n\:+\:4]\:}

\rm{\implies\:S_n\:=\:\dfrac{n}{2}\:[{\red{\underline{3}}}\:+\:{\red{\underline{2n\:+\:1}}}]\:}

✨ Hence,

  • \bf{a_1\:=\:3}

  • \bf\purple{nth\:term\:=\:2n\:+\:1}

\red\therefore The nth term is "2n + 1" .

\rule{200}2

[2]

\bf\begin{tabular}{|   c   |   c   |   c   |}n & S_n = n^2 - 2n & Series  \\  \cline{1 - 3}1 & S_1 = -1 & a_1 = -1  \\  \cline{1 - 3}2 & S_2 = 0 & a_2 = 0 - (-1) = 1  \\  \cline{1 - 3}3 & S_3 = 3 & a_3 = 3 - 0 = 3  \\  \cline{1 - 3}4 & S_4 = 8 & a_4 = 8 - 3 = 5  \\  \cline{1 - 3}\end{tabular}

\green\bigstar \bf\pink{A.P\:=\:-1\:,\:1\:,\:3\:,\:5\:,\:....\:}

\bf{\implies\:S_n\:=\:n^2\:-\:2n\:}

[Note :- Taking common \bf{\dfrac{n}{2}} from the above equation .]

\rm{\implies\:S_n\:=\:\dfrac{n}{2}\:[2n\:-\:4]\:}

\rm{\implies\:S_n\:=\:\dfrac{n}{2}\:[{\red{\underline{-1}}}\:+\:{\red{\underline{2n\:-\:3}}}]\:}

✨ Hence,

  • \bf{a_1\:=\:-1}

  • \bf\purple{nth\:term\:=\:2n\:-\:3}

\red\therefore The nth term is "2n - 3" .

Similar questions