Math, asked by scorder96, 5 hours ago

The expression secX + tanX is equal to -

- tan [π/4 + x/2]

- tan [π/4 - x/2]

- tan x/2

- tan x/4

Which one is correct?

Answers

Answered by earthrotate2
4

Answer:

3rd one is correct .. hope this helps

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\:secx + tanx

\rm \:  =  \: \dfrac{1}{cosx}  + \dfrac{sinx}{cosx}

\rm \:  =  \: \dfrac{1 + sinx}{cosx}

can be rewritten as

\rm \:  =  \: \dfrac{1 + cos\bigg[\dfrac{\pi}{2}  - x\bigg]}{sin\bigg[\dfrac{\pi}{2} - x \bigg]}

Let assume that,

\red{ \boxed{ \sf{ \:\dfrac{\pi}{2} - 2x = y}}}

\rm \:  =  \: \dfrac{1 + cosy}{siny}

We know,

\red{ \boxed{ \sf{ \:1 + cos2x =  {2cos}^{2}x}}}

and

\red{ \boxed{ \sf{ \:sin2x = 2sinx \: cosx}}}

So, using this identity, we get

\rm \:  =  \: \dfrac{2 {cos}^{2}\bigg[\dfrac{y}{2} \bigg] }{2sin\bigg[\dfrac{y}{2} \bigg]cos\bigg[\dfrac{y}{2} \bigg]}

\rm \:  =  \: cot\dfrac{y}{2}

On Substituting the value of y, we get

\rm \:  =  \: cot\bigg[\dfrac{\pi}{4} - \dfrac{x}{2}  \bigg]

We know,

\red{ \boxed{ \sf{ \:cot\bigg[\dfrac{\pi}{2} - x \bigg] = tanx}}}

So, using this we get,

\rm \:  =  \: tan\bigg[\dfrac{\pi}{2} -  \dfrac{\pi}{4} + \dfrac{x}{2}  \bigg]

\rm \:  =  \: tan\bigg[\dfrac{\pi}{4} + \dfrac{x}{2}  \bigg]

Hence,

\red{ \boxed{ \sf{ \:secx + tanx=  \: tan\bigg[\dfrac{\pi}{4} + \dfrac{x}{2}  \bigg]}}}

  • So, Option (1) is correct

Additional Information :-

\red{ \boxed{ \sf{ \:sin2x =  \frac{2tanx}{1 +  {tan}^{2}x }}}}

\red{ \boxed{ \sf{ \:tan2x =  \frac{2tanx}{1 - {tan}^{2}x }}}}

\red{ \boxed{ \sf{ \:cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2}x }}}}

\red{ \boxed{ \sf{ \:cos2x =  {cos}^{2}x -  {sin}^{2}x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1}}}

\red{ \boxed{ \sf{ \:sin3x = 3sinx -  {4sin}^{3}x}}}

\red{ \boxed{ \sf{ \:cos3x =  {4cos}^{3}x - 3cosx}}}

Similar questions