The expression Sin²A+Sin²〈A-B〉-2SinA CosB Sin〈A-B〉 = ? *
Answers
Answered by
2
Answer:
Sin^2 B = sin^2 A + sin^2 (A - B) - 2sinA.cosB.sin(A - B)
Where;
Sin(A - B) = sinA.cosB - cosA.sinB,
We have;
sin^2 A + sin^2 (A - B) - 2sinA.cosB.sin(A - B)
= sin^2 A + [sinA.cosB - cosA.sinB]^2 - 2sinA.cosB [sinA.cosB - cosA.sinB]
= sin^2 A + sin^2 A.cos^2 B - 2sinA.cosB.cosA.sinB + cos^2 A.sin^2 B - 2sin^2 A.cos^2 B + 2sinA.cosB.cosA.sinB
= sin^2 A + sin^2 A.cos^2 B + cos^2 A.sin^2 B - 2sin^2 A.cos^2 B
= sin^2 A - sin^2 A.cos^2 B + cos^2 A.sin^2 B
= sin^2 A [1 - cos^2 B] + cos^2 A.sin^2 B
Where;
Sin^2 B + cos^2 B = 1
1 - cos^2 B = sin^2 B, we have;
= sin^2 A.sin^2 B + cos^2 A.sin^2 B
= sin^2 B [sin^2 A + cos^2 A]
= sin^2 B [ 1 ]
= sin^2 B.
Similar questions