Math, asked by Dividiid, 4 months ago

The exterior angle of a regular polygon is one-third of its interior angle. How many sides has the Polygon ?​

Answers

Answered by Ranveerx107
3

╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾

\bf\underline{\underline{\orange{Question:-}}}

The exterior angle of a regular polygon is one-third of its interior angle. How many sides has the Polygon ?

\bf\underline{\underline{\orange{AnSwEr:-}}}

Let number of sides = n.

Given that:-

exterior angle = 1/3 of interior angle.

or, 360°/n = 1/3.( 180° -360°/n)

or, 360°/n = 60° - 120°/n.

or, 360°/n. + 120°/n = 60°

or, 480°/n = 60°.

or, n = 480°/60° = 8 sides

╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾╾

Answered by thebrainlykapil
17

Question :-

  • The exterior angle of a regular polygon is one-third of its interior angle. How many sides has the Polygon ?

 \\  \\

To Find :-

  • Sides of the polygon.

 \\  \\

Solution :-

 \\

Let there be n sides of the polygon. Then,

  • Each Exterior Angle = \bigg( \frac{360}{n}  \bigg)  \\

  • Each Interior Angle = \bigg( \frac{2n \: - \: 4}{n} \: \times \: 90 \bigg)  \\

\begin{gathered}\begin{gathered}\underline{\boldsymbol{According\: to \:the\: Question :}} \\\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf \boxed{\bf{Exterior \: Angle \: = \: \frac{1}{3}\: \times \: ( Interior \: Angle )  }}\\

\qquad \quad {:} \longrightarrow \sf {\sf{ \frac{360}{n}  \: = \: \frac{1}{3}\: \times \: \frac{2n \:  -  \: 4}{n}  \:  \times  \: 90  }}\\

\qquad \quad {:} \longrightarrow \sf {\sf{ \frac{360}{n}  \: = \: \frac{1}{ \cancel3}\: \times \:  \cancel{90} \:  \times  \: \frac{2n \:  -  \: 4}{n}  \:  }}\\

\qquad \quad {:} \longrightarrow \sf {\sf{ \frac{360}{n}  \: = \: 60 \:  \times  \: \frac{n \:  -  \: 2}{n}  \:  }}\\

\qquad \quad {:} \longrightarrow \sf {\sf{ \frac{360}{60}  \: = \: n\:  \times  \: \frac{n \:  -  \: 2}{n}  \:  }}\\

\qquad \quad {:} \longrightarrow \sf {\sf{ \cancel \frac{360}{60}  \: = \:  \cancel {n}\:  \times  \: \frac{n \:  -  \: 2}{ \cancel{n}}  \:  }}\\

\qquad \quad {:} \longrightarrow \sf {\sf{ 6  \: = \:  n \:  -  \: 2  \:  }}\\

\qquad \quad {:} \longrightarrow \sf {\sf{ 6 \:  +  \: 2  \: = \:  n  \:  }}\\

\qquad \quad {:} \longrightarrow \sf {\bf{8 \: = \:  n  \:  }}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

Thus, The polygon has 8 sides

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions