Math, asked by kumarsapari, 4 months ago

The exterior angles B and C in ∆ABC are bisected to meet at a point P.

Prove that angle BPC = 90°-A/2. Is ∆BPC a cyclic quadrilateral?

Attachments:

Answers

Answered by Anonymous
3

Answer:Given−

ΔABChasitsexternalangles∠CBR&∠BCQbisected

bythelinesBP&CPrespectively.

BP&CPintersectatP.

Tofindout−

(i)is∠BPC=90

o

2

A

?

(ii)isABPCacyclicquadrilateral?

Solution−

∠PBC=∠PBR⟹∠PBC+∠PBR=2∠PBC.

So∠ABC+2∠PBC=180

o

(linearpair).

i.e∠PBC=90

o

2

∠ABC

........(i).

Similarly∠PCQ=∠PCB⟹∠PCB+∠PCQ=2∠PCB.

So∠ACB+2∠PCB=180

o

(linearpair).

i.e∠PCB=90

o

2

∠ACB

........(ii).

Adding(i)&(ii)wehave

∠PBC+∠PCB=90

o

2

∠ABC

+90

o

2

∠ACB

=180

o

2

1

(∠ABC+∠ACB)

⟹180

o

−∠BPC=180

o

2

1

{180

o

−∠BAC}

⟹∠BPC=90

o

2

BAC

.......(ans−i).

Againthesumoftheoppositeanglesofthe

quadrilateralABPC

=∠BAC+∠BPC=∠BAC+90

o

2

BAC

=180

o

.

∴ThequadrilateralABPCisnotacyclic

quadrilateral.........(ans−ii).

(∵thesumoftheoppositeanglesofacyclic

quadrilateral=180

o

).

Ans−OptionB.

Step-by-step explanation:

Answered by syo
0

Answer:

The exterior angles B and C in ABC are bisected to meet at a point P. Prove that BPC = 900

. Is ABPC a

cyclic quadrilateral ?

Step-by-step explanation:

The exterior angles B and C in ABC are bisected to meet at a point P. Prove that BPC = 900

. Is ABPC a

cyclic quadrilateral ?

Similar questions