Math, asked by Atlas99, 5 hours ago

The external diameter of a 35-cm-long metal pipe is 10 cm. If the pipe is 1 cm thick and the density of the metal is 7.8 g/cm^3, find the volume of the metal used in the pipe and the mass of the pipe.​

Answers

Answered by YourHelperAdi
29

Given :

  • Density of Metal = 7.8 g/cm³
  • Inner diameter = 8 cm (10-2 cm)
  • outer diameter = 10 cm

__________________________

To Find :

The mass of the pipe given

__________________________

Formula to be applied :

Volume of the pipe :

  • Area of ring × Hieght of pipe

Density = Mass/volume

so, Mass = volume × Density

__________________________

Solution :

given, Inner diameter = 8 cm

Radius = diameter/2

so, inner radius = 8/2 = 4 cm

Outer diameter = 10 cm

so, radius = 5 cm

We know that ,

  \tt{ area \: of \: ring =  \pi \: o {r}^{2}  -  \pi \: i {r}^{2} }

 \implies \tt{area =  \pi( {or}^{2}  -  {ir}^{2}) }

Here, Ir = Inner Radius

Or = outer radius

so, area of ring:

 \tt{ a =  \pi( {5}^{2}  -  {4}^{2}) }

 \implies \tt{ a =  \pi(25 - 16)}

 \implies \tt{a = 3.14 \times 9}

 \implies \tt{a = 28.26}

so, area of ring = 28.26 cm²

________________________________

So, volume of pipe = Area of ring × length

 \tt{ \implies \: volume = 35 \times 28.26}

 \implies \tt{volume = 989.1}

Hence, Volume = 989.1 cm³

________________________________

Mass = Volume × Density

 \implies \tt{mass = 989.1 \times 7.8}

 \red{ \underline{ \boxed{ \tt{ \therefore \: mass = 6154.98 \: g}}}}

Hence , mass = 6154.98 g

Above is A rough figure to get an idea :)

Attachments:
Answered by Anonymous
97

Given :

➠ Density of Metal

➱ 7.8 g/cm³

➠ External diameter of metal pipe

➱ 10 cm

External radius

➻ diameter /2

➻ 10 cm / 2

External radius = 5 cm

Height of pipe ➠ 35 cm

Thickness = 1 cm

__________________________

To Find :

➠ The mass of the pipe given

Volume of metal used in pipe

__________________________

Formula to be applied :

Internal radius

➠ External Radius - Thickness

__________________________

Solution :

➠ Place given value in formula

➠ r = R - 1 cm

  \tt{Internal  \: radius }

\rm{\implies \: 5 \: cm \:  - 1cm \:  }

\bf{\implies  \: r =  \: 4 \: cm}

__________________________

Formula to be applied :

▶ External volume of pipe

π R² h

__________________________

➠ Place given value in formula

  \tt{External  \: Volume}

  \rm{ \:  \frac{22}{7} \times( {5)}^{2} \times 35  }

  \rm{ \:  \frac{22}{7} \times 25\times 35  }

  \rm{ \:  \frac{22 \times 25 \times 35}{7}  }

  \rm{ \frac{19250}{7}  }

  \bf{2750}

__________________________

Formula to be applied :

▶ External volume of pipe

π r² h

__________________________

➠ Place given value in formula

  \tt{External  \: Volume}

  \rm{ \:  \frac{22}{7} \times( {4)}^{2} \times 35  }

  \rm{ \:  \frac{22}{7} \times16 \times 35  }

  \rm{ \: \frac{22 \times 16 \times 35}{7}   }

  \rm{ \: \frac{12320}{7}   }

  \bf{1760}

__________________________

Formula to be applied :

▶ Volume of metal used in pipe

  • ➠( External volume of pipe - Internal volume of pipe)

__________________________

➠ Place given value in formula

  \tt{2750 -1760}

  \bf{990 \: cm³}

__________________________

Given :

➠ Mass of 1 cm³ of metal is 7.8 gram

__________________________

Final Answer :

➠Therefore mass of pipe

➠ mass of 990 cm ³ metal

  • = 990 × 7.8 gram

  \bf{➠7.722 \: kg}

Similar questions