the external diameter of a cylindrical iron pipe 25 dm long is 14 cm the thickness of iron is 1.75 cm. find the weight of the pipe if 1 CU cm of iron weight 10g
Answers
Answer:
216.5625 kg
Step-by-step explanation:
Find the external radius:
External Diameter = 14 cm (Given)
External Radius = 14 ÷ 2 = 7 cm
Find the internal radius:
Thickness of the iron = 1.75 cm
Internal Radius = 7 + 1.75 = 8.75 cm
Find the volume of the iron:
Length = 25dm = 250 cm
Volume = π(r1)²(h) - π(r2)²(h)
Volume = π(8.75)²(250) - π(7)²(250) = 21656.25 cm³
Find the weight:
1 cm³ = 10g
21656.25 cm³ = 21656.25 x 10 = 216562.5 g
216562.5 g = 216.5625 kg
Answer: 216.5625 kg
Answer:
216365.625 g
Step-by-step explanation:
As given in the Question
External diameter = 14 cm
Thickness = 1.75 cm
Length = 25 dm = 25 * 10 cm = 250 cm ∴ (1 dm = 10 cm)
1 cm³ = 10 g
To find is the Weight of the pipe
External diameter = 14 cm
External radius =r₁ =
=
= 7 cm
Thickness = 1.75 cm
Internal radius =r₂= External Radius + Thickness
=7 + 1.75
= 8.75 cm
Now we Know that For cylindrical pipe
Volume = π(r₂)²(h) - π(r₁)²(h) ∴ (π=3.14)
Putting the values in the equation
Volume = (3.14)*(8.75)²*(250) - (3.14)*(7)²*(250)
Volume = 60101.5625 - 38465
Volume = 21636.5625 cm³
Now it is given that
1 cm³ = 10 g
so
21636.5625 cm³ = 21636.5625 * 10 g
=216365.625 g
So the weight of the iron is 216365.625 g