Math, asked by jayanti147tatak, 4 months ago

the factor form of z²+1/z²+2-2z-2/z is

Answers

Answered by singhshreya94132
5

Step-by-step explanation:

z²+1/z²+2=(z+1/z)²

-2z+21/z=-2(z+1/z)

Ans = (z+1/z)(z+1/z-2).

Answered by plrohit2008
3

Answer:

(z + \frac{1}{z} - 2) (z + \frac{1}{z})

Step-by-step explanation:

[FIRST SQUARE (z + \frac{1}{z}) USING IDENTITY ]

(z + \frac{1}{z})² = z² + \frac{1}{z^{2} } + 2

[NOW (- 2z - \frac{2}{z}) IS MISSING, SO ADD THEM BOTH THE SIDES]

⇒ (z + \frac{1}{z}) × (z + \frac{1}{z}) - 2z - \frac{2}{z} =  z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z}

⇒ (z + \frac{1}{z}) × (z + \frac{1}{z}) - 2(z + \frac{1}{z}) = z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z}

[ HERE z + \frac{1}{z} AND - 2 ARE COMMON]

⇒ (z + \frac{1}{z} - 2) (z + \frac{1}{z}) = z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z}

HENCE FACTORS OF  z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z} ARE ⇒

(z + \frac{1}{z} - 2) (z + \frac{1}{z})

THANK YOU

Similar questions