Math, asked by MSALMANALI, 1 year ago

THE FACTOR OF ; Z^2 + 1/z^2 + 2- 2z - 2/z are

Answers

Answered by ARaj001
3

 {z}^{2}  +  \frac{1}{ {z}^{2} }   + 2 =  ({z +  \frac{1}{z} })^{2}
 - 2z  - 2 \frac{1}{z}  =  - 2(z +  \frac{1}{z} )
ans \: (z +  \frac{1}{z} )(z  + \frac{1}{z} - 2)

MSALMANALI: you ans is correct ........ thnks
Answered by plrohit2008
0

Answer:

(z + \frac{1}{z} - 2) (z + \frac{1}{z})

Step-by-step explanation:

[FIRST SQUARE (z + \frac{1}{z}) USING IDENTITY ]

(z + \frac{1}{z})² = z² + \frac{1}{z^{2} } + 2

[NOW (- 2z - \frac{2}{z}) IS MISSING, SO ADD THEM BOTH THE SIDES]

⇒ (z + \frac{1}{z}) × (z + - 2z - \frac{2}{z} =  z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z}

⇒ (z + \frac{1}{z}) × (z +

[ HERE z + \frac{1}{z} AND - 2 ARE COMMON]

⇒ (z + \frac{1}{z} - 2) (z +

HENCE FACTORS OF  z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z} ARE ⇒

(z + \frac{1}{z} - 2) (z + \frac{1}{z})

THANK YOU

Similar questions