The factorisation of 64p² – 81q² involves :
a) (a + b)² = a² + 2ab + b²
b) (a – b)² = a² – 2ab + b²
c) (a + b)(a – b) = a² + b²
d) None of these
Answers
Answered by
31
Question :
The factorization of 64p² – 81q² involves :
a. (a + b)² = a² + 2ab + b²
b. (a – b)² = a² – 2ab + b²
c. (a + b)(a – b) = a² – b²
d. None of these
Answer :
c. (a + b)(a – b) = a² + b²
Explanation :
64p² - 81q²
⇒ (8p)² - (9q)²
∵ a² - b² = (a+b) (a-b)
⇒ ( 8p + 9q ) ( 8p - 9q )
More Info :
- ( a + b )³ = a³ + b³ + 3ab ( a + b )
- ( a - b )³ = a³ - b³ - 3ab ( a - b )
- a³ + b³ = ( a + b ) ( a² - ab + b² )
- a³ - b³ = ( a - b ) ( a² + ab + b² )
Answered by
23
Answer:
Option (C) (a + b) (a - b) = a² - b²
Step-by-step explanation:
↪ 64p² - 81q²
↪ (8p)² - (9q)²
[ °.° a² - b² = (a + b) (a - b) ]
↪ (8p + 9q) (8p - 9q)
Some algebraic identities.
•(a + b)² = a² + b² + 2ab
•(a - b)² = a² + b² - 2ab
•(a + b)(a – b) = a² - b²
•(a + b)³ = a³ + b³ + 3ab(a + b)
•(a - b)³ = a³ - b³ + 3ab(a + b)
•(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Similar questions