Math, asked by svgirnare571977, 6 months ago

The factorisation of 64p² – 81q² involves :

a) (a + b)² = a² + 2ab + b²

b) (a – b)² = a² – 2ab + b²

c) (a + b)(a – b) = a² + b²

d) None of these

Answers

Answered by BrainlyIAS
31

Question :

The factorization of 64p² – 81q² involves :

a. (a + b)² = a² + 2ab + b²

b. (a – b)² = a² – 2ab + b²

c. (a + b)(a – b) = a²

d. None of these

Answer :

c. (a + b)(a – b) = a² + b²

Explanation :

64p² - 81q²

⇒ (8p)² - (9q)²

a² - b² = (a+b) (a-b)

⇒ ( 8p + 9q ) ( 8p - 9q )

More Info :

  • ( a + b )³ = a³ + b³ + 3ab ( a + b )
  • ( a - b )³ = a³ - b³ - 3ab ( a - b )
  • a³ + b³ = ( a + b ) ( a² - ab + b² )
  • a³ - b³ = ( a - b ) ( a² + ab + b² )
Answered by Anonymous
23

Answer:

\pink\bigstarOption (C) (a + b) (a - b) = a² - b²

Step-by-step explanation:

↪ 64p² - 81q²

↪ (8p)² - (9q)²

[ °.° a² - b² = (a + b) (a - b) ]

↪ (8p + 9q) (8p - 9q)

\red{\bigstar} Some algebraic identities. \green{\bigstar}

•(a + b)² = a² + b² + 2ab

•(a - b)² = a² + b² - 2ab

•(a + b)(a – b) = a² - b²

•(a + b)³ = a³ + b³ + 3ab(a + b)

•(a - b)³ = a³ - b³ + 3ab(a + b)

•(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

Similar questions