Math, asked by nchat16, 8 months ago

The factors of x ( 12x + 7 ) - 10 is

Answers

Answered by dangerousgirl83
23

Answer:

Here Your Answer Mate

Givenpolynomialx(12x+7)−10

Givenpolynomialx(12x+7)−10=12x

Givenpolynomialx(12x+7)−10=12x 2

Givenpolynomialx(12x+7)−10=12x 2 +7x−10

Givenpolynomialx(12x+7)−10=12x 2 +7x−10

Givenpolynomialx(12x+7)−10=12x 2 +7x−10

Givenpolynomialx(12x+7)−10=12x 2 +7x−10 /* Splitting the middle term, we get */

Givenpolynomialx(12x+7)−10=12x 2 +7x−10 /* Splitting the middle term, we get */\begin{gathered}= 12x^{2} +15x - 8x - 10 \\= 3x( 4x + 5 ) - 2( 4x + 5 ) \\= (4x+5)(3x-2)

Givenpolynomialx(12x+7)−10=12x 2 +7x−10 /* Splitting the middle term, we get */\begin{gathered}= 12x^{2} +15x - 8x - 10 \\= 3x( 4x + 5 ) - 2( 4x + 5 ) \\= (4x+5)(3x-2)=12x

Givenpolynomialx(12x+7)−10=12x 2 +7x−10 /* Splitting the middle term, we get */\begin{gathered}= 12x^{2} +15x - 8x - 10 \\= 3x( 4x + 5 ) - 2( 4x + 5 ) \\= (4x+5)(3x-2)=12x 2

Givenpolynomialx(12x+7)−10=12x 2 +7x−10 /* Splitting the middle term, we get */\begin{gathered}= 12x^{2} +15x - 8x - 10 \\= 3x( 4x + 5 ) - 2( 4x + 5 ) \\= (4x+5)(3x-2)=12x 2 \: x(12x+7)-10 } \\\green {= (4x+5)(3x-2)}\end{gathered}

\: x(12x+7)-10 } \\\green {= (4x+5)(3x-2)}\end{gathered} Factorsofx(12x+7)−10

\: x(12x+7)-10 } \\\green {= (4x+5)(3x-2)}\end{gathered} Factorsofx(12x+7)−10=(4x+5)(3x−2)

\: x(12x+7)-10 } \\\green {= (4x+5)(3x-2)}\end{gathered} Factorsofx(12x+7)−10=(4x+5)(3x−2)

Answered by Anonymous
667

 \sf  \large \red{\underline{ Question:-}}\\\\

  •  \sf \: The  \: factors  \: of \:  x ( 12x + 7 ) - 10 \:  is

 \\\\\sf  \large \red{\underline{Given:-}}\\\\

  •  \sf \to \:  x ( 12x + 7 ) - 10 \\

 \\\\\sf  \large \red{\underline{To   \: Find:-}}\\\\

  •  \sf \to \: Find  \: the \:  factor

 \\\\\sf  \large  \red{\underline{Solution :-  }}\\\\

 \sf \to \:  x ( 12x + 7 ) - 10 \\  \\ \sf \to \:  {12x}^{2}  + 7x - 10 \\  \\  \sf \to \:  {12x}^{2}  + 15x - 8x - 10 \\  \\  \sf \to  \: 3x(4x + 5) - 2(4x + 5) \\  \\  \sf \to (4x + 5)(3x - 2) \\  \\  \\

 \sf  \underline {\red{ the \: factor \: is }\: (4x + 5)(3x - 2) }  \:  \huge \: \dag \: \\  \\

  \large\underline{ \sf  \bigstar \red{ \: {verification : }}} \\  \\

 \sf \to \: (4x + 5)(3x - 2) \\  \\  \sf \to \: 12 {x}^{2}  - 8x + 15x - 10 \\  \\  \sf \to \:  {12x}^{2}  + 7x - 10 \: \\  \\ \sf \to x ( 12x + 7 ) - 10

\sf   \large\red  { hence \: verified}\huge  \dag \:\\  \\

Similar questions