Math, asked by gurunaidu63gmailcom, 8 months ago

The factors of x²‐239‐972​

Answers

Answered by Vamprixussa
5

Given

x^{2} -239x-972=0

Solving, we get,

x^{2} -239x-972=0

\implies x^{2} +4x-243x-972=0

\implies x(x+4)-243(x+4)=0

\implies (x+4)(x-243)=0

Now,

x+4=0\\\implies x = -4

x-243=0\\\implies x = 243

\boxed{\boxed{\bold{Therefore, \ the \ zeroes \ are \ -4 \ and \ 243}}}}}}}}}}}}

                                                     

Answered by Anonymous
4

Correct Question

Find the factors of polynomial \sf{x^{2}-239x-972}

Answer:-

\sf{(x-243) \ and \ (x+4) \ are \ the \ factors}

\sf{of \ polynomial \ x^{2}-239x-972}

Given:

The given polynomial is

\sf{\implies{x^{2}-239x-972}}

To find:

  • Factors of the polynomial.

Solution:

The given polynomial is

\sf{\implies{x^{2}-239x-972}}

\sf{\implies{x^{2}-243x+4x-972}}

\sf{\implies{x(x-243)+4(x-242)}}

\sf{\implies{(x-243)(x+4)}}

\sf\purple{\tt{\therefore{(x-243) \ and \ (x+4) \ are \ the \ factors}}}

\purple{\tt{of \ polynomial \ x^{2}-239x-972}}

Similar questions