Math, asked by sweetysiri92, 1 year ago

The feasible region region is the set of points on and inside the triangle with vertices (0,0),(8,0) and (0,10) find the maximum and minimum values of the objective function Q over the feasible region of the function
a)Q=-4x-3y
b)Q=10x-8y

Answers

Answered by kvnmurty
1
see diagram.
we have to find the value of Q at the vertices of the region and at the boundaries specified by the sides of the triangle. (the constraints).


The equations of the lines OA : y = 0.
         OB :  x = 0.          and   
     AB :  x/8 + y/10  = 1      the intercept form.
             5 x + 4 y = 40

The region shaded in the diagram = the area of the triangle = feasible region.
   the region is specified by  x ≥ 0,  y ≥ 0,  5 x + 4 y ≤ 40 
             or,  y ≤ (10 - 1.25 x)

   So the region is :  0 ≤ x ≤ 8,    0 ≤ y ≤ (10 - 1.25 x)

1)
       Q = - 4 x - 3 y
           ≥ -4 x - 3 (10 - 1.25 x)
 =>  Q  ≥  - 0.25 x - 30 
     The minimum value of Q : at x = 8,  is  -32
     The maximum value of Q : at x = 0,  is x = - 30.
     Value of Q at vertex O:  -4 * 0 - 3 * 0  = 0
                     at vertex A :  - 4 * 8 - 3 * 0 = - 32
                     at vertex B:  - 4 *0 - 3 * 10 = - 30

so  Q is maximum at the origin and is 0.  Q is minimum at A (8, 0) and is -32.
======================================
2)  we have:   the region :  0 ≤ x ≤ 8,    0 ≤ y ≤ (10 - 1.25 x)

   Q = 10 x - 8 y
        ≥ 10 x - 8 (10 - 1.25 x)
   =>  Q ≥ 20 x - 80    or 20 (x - 4)
          => when x = 0, Q = -80, and when x = 8,  Q = 80.
      
     Q is 0 at the origin O.
         is  10 * 8 - 8 * 0 = 80 at  A (8, 0)
         is   10 * 0 - 8 * 10 = - 80 at  B( 0, 10)
        
Thus the maximum value is at A (8,0) :  80
   and the minimum value is at B (0, 10) :  -80.

Attachments:
Similar questions