Math, asked by wasteeeeedddb, 6 months ago

the figure, a square OABC is inscribed in a quadrant OPBQ. If OA = 20 cm, find the area of the shaded region. (Use π = 3.14) class 10 maths.,​

Answers

Answered by itzpriya22
4

The area of the shaded region = 228 cm².

Given :

A square OABC is inscribed in a quadrant OPBQ.

OA = 20 cm (given, a square that means, all the sides are equal I.e. all the sides of the square is 20 cm).

π = 3.14.

To Find :

The area of the shaded region.

Solution :

Since,

OABC is a square.

So, by the pythagoras theorem,

 \blue{ \boxed{  \green{ \bf{H}^{2}  =  {B}^{2}  +  {P}^{2}} }}

Where,

H = hypotenuse.

B = base.

P = perpendicular.

We have,

H = OB = ?

B = OA = 20 cm.

P = AB = 20 cm.

Substitute all the values in the Pythagoras theorem,

 \bf \implies  {OB}^{2}  = {OA}^{2}   +  {AB}^{2}  \\  \\  \\  \bf \implies  {OB}^{2}  =  {(20 \: cm)}^{2}  +  {(20 \: cm)}^{2}  \\  \\  \\  \bf \implies  {OB}^{2}  = 400 \:  {cm}^{2}  + 400 \:  {cm}^{2}  \\  \\  \\  \bf \implies  {OB}^{2}  = 800 \:  {cm}^{2}  \\  \\  \\  \bf \implies OB =  \sqrt{800 \:  {cm}^{2} }  \\  \\  \\  \bf \implies OB =  \sqrt{2 \times 2 \times 2 \times 10 \times 10}  \: cm \\  \\  \\  \bf \implies OB =  \sqrt{ {(2)}^{2} \times 2 \times  {(10)}^{2} }  \: cm \\  \\  \\  \bf \implies OB = 2 \times 10 \sqrt{2} \: cm  \\  \\  \\  \bf \implies OB = 20 \sqrt{2}  \: cm

But OB is a radius of the quadrant. (i.e. r = 20√2 cm).

Now we have to find the area of the shaded region.

Area of shaded region = Area of quadrant OPBQ – Area of square OABC.

 \bf \implies  \dfrac{\pi {r}^{2} }{4}  -  {a}^{2}  \\  \\  \\  \bf \implies  \dfrac{3.14 \times  {(20 \sqrt{2} \: cm )}^{2} }{4}  -  {(20 \: cm)}^{2}  \\  \\  \\  \bf \implies  \frac{3.14 \times \not400 \times 2}{ \not4} \:  {cm}^{2}  - 400  \\  \\  \\  \bf \implies3.14 \times 100 \times 2  \:  {cm}^{2} -  {400 \: cm}^{2}  \\  \\  \\  \bf \implies 6.28 \times 100 \:  {cm}^{2}  - 400 \:  {cm}^{2}  \\  \\  \\  \bf \implies 628 \: {cm}^{2}  - 400 \:  {cm}^{2}  \\  \\  \\  \bf \implies 228 \:  {cm}^{2}

Hence,

The area of the shaded region is 228 cm².

Similar questions