the figure, ABC is right angled at C, and CD AB.
Also, A = 65°. Find:
(1) ACD
(ii) BCD
(ii) CBD
Answers
Explanation :
As we have given, ABC is a right angled triangle at c, so /_ACB = 90°
In triangle ADC,
/_ACD +/_CDA + /_CAD = 180°
.....(sum of the measures of angles of triangle is 180°)
/_BDC = /_CDA = 90° ,
/_CAD = 65° ......(Given)
therefore,
/_ACD + 90° + 65° = 180°
/_ACD + 155 = 180°
/_ACD = 180° - 155°
/_ACD = 25°
in the given figure, /_ACB = 90°
/_ACB = /_ACD + /_DCB
90° = 25° + /_DCB
/_DCB = 90° - 25°
/_DCB = 65 = /_BCD
in triangle CDB ,
/_CDB + /_CBD +/_BCD = 180°
90° + /_CBD + 65° = 180°
155° + /_CBD = 180°
/_CBD = 180° - 155°
/_CBD = 25°
Answer:
As we have given, ABC is a right angled triangle at c, so /_ACB = 90°
In triangle ADC,
/_ACD +/_CDA + /_CAD = 180°
.....(sum of the measures of angles of triangle is 180°)
/_BDC = /_CDA = 90° ,
/_CAD = 65° ......(Given)
therefore,
/_ACD + 90° + 65° = 180°
/_ACD + 155 = 180°
/_ACD = 180° - 155°
/_ACD = 25°
in the given figure, /_ACB = 90°
/_ACB = /_ACD + /_DCB
90° = 25° + /_DCB
/_DCB = 90° - 25°
/_DCB = 65 = /_BCD
in triangle CDB ,
/_CDB + /_CBD +/_BCD = 180°
90° + /_CBD + 65° = 180°
155° + /_CBD = 180°
/_CBD = 180° - 155°
/_CBD = 25°