Physics, asked by sabameer, 9 days ago

The figure below shows three point charges, all positive. If the net electric force on the center charge is zero, what is the value of x/y?​

Attachments:

Answers

Answered by IamIronMan0
127

Explanation:

We know that electric field due to point charge q at distance r from it is

e\:  \:   =  \frac{kq}{ {r}^{2} }

and force F = qE ( proportional to E )

Since net force is zero i.e. net electric field is zero

so 2q and 3q charge electric field must cancel out each other and their magnitude are equal

 \frac{k(2q)}{ {x}^{2} }  =  \frac{k(3q)}{ {y}^{2} }  \\  \\  \frac{ {y}^{2} }{ {x}^{2} }  =  \frac{3}{2}  \\  \\  \frac{y}{x}  =  \sqrt{ \frac{3}{2} }

There is some misprint in options because ratio of two distance y and x can't be multiple of y .

Answered by SparklingThunder
95

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

The figure below shows three point charges , all positive . If the net electric force on the center charge is zero , what is the value of y/x ?

  • A.  \displaystyle \frac{4}{9}

  • B.  \displaystyle \sqrt{ \frac{2}{3} }

  • C.  \displaystyle \sqrt{ \frac{3}{2} } ✔️

  • D.  \displaystyle \frac{3}{2}

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

As net electric force on q is zero . So , the electric force on q due to 2q is equal to electric force on q due to 3q . Therefore ,

 \displaystyle \sf  \longrightarrow   \frac{kq(2q)}{ {( x)}^{2} }  =   \frac{kq(3q)}{ {( y)}^{2} } \:  \\  \\  \\  \displaystyle \sf  \longrightarrow    \frac{ \cancel{kq}(2q)}{ {( x)}^{2} }  =   \frac{\cancel{kq}(3q)}{ {( y)}^{2} } \:  \\  \\  \\ \displaystyle \sf  \longrightarrow     \frac{2q}{ {x}^{2} }  =  \frac{3q}{ {y}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ \displaystyle \sf  \longrightarrow     \frac{ {y}^{2} }{ {x}^{2} }  =  \frac{3q}{2q}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ \displaystyle \sf  \longrightarrow      { \bigg (\frac{y}{x} \bigg) }^{2}  =  \frac{3 \cancel{q}}{2 \cancel{q}}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\  \\ \displaystyle \sf \longrightarrow     { \bigg (\frac{y}{x} \bigg) }^{2}  =  \frac{3}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \\  \\  \\   \displaystyle \sf \longrightarrow  \frac{y}{x}  =  \sqrt{ \frac{3}{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Attachments:
Similar questions