Chemistry, asked by Debdas6435, 10 months ago

The figure is the plot of stopping potential versus the frequency of the light used in an experiment on photoelectric effect. Find (a) the ratio h/e and (b) the work function.
Figure

Answers

Answered by bhuvna789456
1

(a) The ratio \frac{h}{e} is 4.414 \times 10^{-15} \mathrm{Vs}

(b) The work function is 0.414 \mathrm{eV}

Explanation:

We've got 2 cases to handle.

Case (I):- When potential  stopping  , V_0 =1.656 volts

Frequency, v=5 \times 10^{14} \mathrm{Hz}

Case (II):- When potential  stopping , V_0 =0

Frequency, v=1 \times 10^{14} \mathrm{Hz}

(b)To find: The work function.

From the Equation of Einstein,  e V_{0}=h v-W_{0}

When the case(1) and case(2) values are replaced we get:

\begin{aligned}&1.656 e=h \times 5 \times 10^{14}-W_{0} \ldots(1)\\&0=5 \times h \times 1 \times 10^{14}-5 \times W_{0} \ldots(2)\end{aligned}

We get: Subtract from (1) equation(2)

W_{0}=\frac{1.656}{4} e V    

     = 0.414 eV

(a)To find the ratio of  \frac{h}{e} :

Putting the W_0 value into equation (2), we get:

5 W_{0}=5 h \times 10^{14}

5 \times 0.414=5 \times h \times 10^{14}

h=4.414 \times 10^{-15} \mathrm{eVs}

Or  

\frac{h}{e}=4.414 \times 10^{-15} \mathrm{Vs}

Similar questions