the firsr two terms of geometric progression add upto 12 the sum of the third and fourth term is 48 if the term of th gp are alternately positive and negative then the first term is
Answers
Answer:
hello mate..
here's ur answer..
a,ar,a r2 ,a r3
a,ar,a r2 ,a r3a,ar,ar2,ar3
a,ar,a r2 ,a r3a,ar,ar2,ar3a+ar=12−−−(1)
a,ar,a r2 ,a r3a,ar,ar2,ar3a+ar=12−−−(1)a+ar=12---(1)
a,ar,a r2 ,a r3a,ar,ar2,ar3a+ar=12−−−(1)a+ar=12---(1)ar2 + ar3 =48
3 =48ar2+ar3=48
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4r=+2,−2
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4r=+2,−2r=+2,-2
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4r=+2,−2r=+2,-2r=2
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4r=+2,−2r=+2,-2r=2r=2
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4r=+2,−2r=+2,-2r=2r=2a+ar=12
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4r=+2,−2r=+2,-2r=2r=2a+ar=12a+ar=12
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4r=+2,−2r=+2,-2r=2r=2a+ar=12a+ar=12a(1−2)=12
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4r=+2,−2r=+2,-2r=2r=2a+ar=12a+ar=12a(1−2)=12a(1-2)=12
3 =48ar2+ar3=48r2 (a+ar)=48−−−(2)r2(a+ar)=48---(2)12=1r2=14r2 =4r2=4r=+2,−2r=+2,-2r=2r=2a+ar=12a+ar=12a(1−2)=12a(1-2)=12a= −12
−12a= -12
hope it helps..