Math, asked by Anonymous, 9 months ago

the first amd best answer will be marked as brainliest by me....promise
Utkarsh Pratham
according class 9​

Attachments:

Answers

Answered by AdorableMe
72

Given

\bullet\ \sf{(xy)^{(a-1)}=z}  

\bullet\ \sf{(yz)^{(b-1)}=x}  

\bullet\ \sf{(xz)^{(c-1)}=y}  

\bullet\ \sf{xyz \neq -1,\ 0\ or\ 1}

To Find

The value which is equal to ab + bc + ca.

Solution

\sf{(xy)^{(a-1)}=z}\\\\\sf{\implies log\ xy^{(a-1)}=log\ z}

(applying log to both the sides)

\sf{\implies (a-1)log\ xy=log\ z}

(As log m^n = n*log m)

\sf{\implies \dfrac{(a-1)log\ xy}{log\ z}=1}\\\\\sf{\implies \dfrac{log\ xy}{log\ z}=\dfrac{1}{a-1} }\\\\\sf{\implies a-1=\dfrac{log\ z}{log\ xy} }\\\\\sf{\implies a=\dfrac{log\ z}{log\ xy}+1}\\\\\sf{\implies a=\dfrac{log\ z+log\ xy}{log\ xy} }\\\\\sf{\implies a= \dfrac{log\ xyz}{log\ xy} }

(As log ab = log a + log b)

Similarly,

\bigstar\ \sf{b= \dfrac{log\ xyz}{log\ zy} }

\bigstar\ \sf{c= \dfrac{log\ xyz}{log\ zx} }

\rule{160}4

Now,

\sf{a+b+c=\dfrac{log\ xyz}{log\ xy} +\dfrac{log\ xyz}{log\ zy} +\dfrac{log\ xyz}{log\ zx} }

\sf{\implies \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{log\ xy}{log\ xyz} +\dfrac{log\ yz}{log\ xyz} +\dfrac{log\ xz}{log\ xyz} }

\sf{\implies \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{log\ xy+log\ yz+log\ xz}{log\ xyz} }

(As log ab = log a + log b)

\sf{\implies \dfrac{bc+ac+ab}{abc}=\dfrac{log\ ( xy\times yz\times xz)}{log\ xyz} }

\sf{\implies \dfrac{ab+bc+ca}{abc}=\dfrac{log\ (x^2 \times y^2 \times z^2)}{log\ xyz} }

\sf{\implies \dfrac{ab+bc+ca}{abc}=\dfrac{log\ (xyz)^2}{log\ xyz} }

\sf{\implies \dfrac{ab+bc+ca}{abc}= \dfrac{2 \times log\ xyz}{log\ xyz} }

(As log m^n = n*log m)

\sf{\implies \dfrac{ab+bc+ca}{abc}= 2 }

\large \boxed{\sf{\implies ab+bc+ca= 2abc }}

\rule{160}4

Hope this helps -,-

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
113

\huge\sf\pink{Answer}

☞ ab+bc+ca = 2abc

\rule{110}1

\huge\sf\blue{Given}

\sf{(xy)^{(a-1)}=z}

\sf{(yz)^{(b-1)}=x}

\sf{(xz)^{(c-1)}=y}

\sf{xyz \ne -1,\ 0\ or\ 1}

\rule{110}1

\huge\sf\gray{To \:Find}

◈ Which of the above value is equal to ab+bc+ca

\rule{110}1

\huge\sf\purple{Steps}

\bullet\:\underline{\textsf{As Per the Question}}

\sf{(xy)^{(a-1)}=z}

\sf{log\ xy^{(a-1)}=log\ z}

Here we shall apply log on both sides,

\sf{(a-1)log\ xy=log\ z}

\bigg\lgroup \sf log \ m^n=n\times log \ m \bigg\rgroup

\sf{\dfrac{(a-1)log\ xy}{log\ z}=1}

\sf{\dfrac{log\ xy}{log\ z}=\dfrac{1}{a-1}}

\sf{a-1=\dfrac{log\ z}{log\ xy}}

\sf{a=\dfrac{log\ z}{log\ xy}+1}

\sf{a=\dfrac{log\ z+log\ xy}{log\ xy}}

\sf{a= \dfrac{log\ xyz}{log\ xy}}

\bigg\lgroup \sf log \ ab = log \ a + log \ b\bigg\rgroup

\bigg\lgroup\sf{b= \dfrac{log\ xyz}{log\ zy}}\bigg\rgroup

\bigg\lgroup\sf{c= \dfrac{log\ xyz}{log\ zx}}\bigg\rgroup

So now,

\small\underline{\boxed{\sf{a+b+c=\dfrac{log\ xyz}{log\ xy} +\dfrac{log\ xyz}{log\ zy} +\dfrac{log\ xyz}{log\ zx}}}}

\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{log\ xy}{log\ xyz} +\dfrac{log\ yz}{log\ xyz} +\dfrac{log\ xz}{log\ xyz}}

\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{log\ xy+log\ yz+log\ xz}{log\ xyz}}

\sf{\dfrac{bc+ac+ab}{abc}=\dfrac{log\ ( xy\times yz\times xz)}{log\ xyz}}

\sf{\dfrac{ab+bc+ca}{abc}=\dfrac{log\ (x^2 \times y^2 \times z^2)}{log\ xyz}}

\sf{\dfrac{ab+bc+ca}{abc}=\dfrac{log\ (xyz)^2}{log\ xyz}}

\sf{\dfrac{ab+bc+ca}{abc}= \dfrac{2 \times log\ xyz}{log\ xyz}}

\sf{\dfrac{ab+bc+ca}{abc}= 2}

\sf\orange{ab+bc+ca=2abc}

\rule{170}3

Similar questions