Math, asked by nipu37051, 10 months ago

The first and last terms of an AP are 1 and 11. If the sum of its terms is 36, then the number of terms will be

Answers

Answered by riddhidebbasu
6

Step-by-step explanation:

Let the no. of terms be n

a = 1

l = 11

sum = 36

BTC

(n/2) * ( a + l ) = sum of all terms

( n / 2 ) * ( 11 + 1 ) = 36

12n / 2 = 36

6n = 36

n = 6

there are 6 terms in the AP

Answered by llTheUnkownStarll
2

Given:

  • \sf{First\: term\;of\;AP,\;(a) =  \textsf{ \textbf{1}}}
  • \sf{Last\;term \;of \;AP,\;(l) = { \textsf{\textbf{11}}}}
  • \sf{Sum\:of\;terms\;of\;AP,\: (s_{n}) ={ \textsf{ \textbf{36}}}}

⠀⠀⠀

To find:

  • The number of term

Solution:

For any Arithmetic Progression (AP), the sum of nth terms having last term is Given by :

\begin{gathered} \blue\bigstar \underline{\boxed{{\sf{S_n = \dfrac{n}{2} \bigg\lgroup a + l \bigg\rgroup}}}}\\ \\\end{gathered}

Where,

  • n: no. of terms
  • a: First Term
  • l: Last Term

\begin{gathered}\;\;\;\;{\underline{\frak{ \color{navy}{Substituting\;the\:given\;values\;in\;formula\;:}}}}\\\end{gathered}</p><p>⠀

\begin{gathered}:\implies\sf S_n = \dfrac{n}{2}\bigg\lgroup a + l\bigg\rgroup = 36\\ \\\end{gathered} \\  \\ \begin{gathered}:\implies\sf \dfrac{n}{2} \bigg\lgroup 1 + 11\bigg\rgroup = 36 \\ \\\end{gathered} \\  \\ \begin{gathered}:\implies\sf \dfrac{ \: n}{\cancel{\;2}} \times \: \cancel{12}= 36\\ \\\end{gathered} \\  \\ \begin{gathered}:\implies\sf 6n = 36\\ \\\end{gathered} \\  \\ \begin{gathered}:\implies\sf n = \cancel\dfrac{36}{6}\\ \\\end{gathered} \\  \\ \begin{gathered}:\implies\sf\underline{\boxed{{\frak{{n = 6}}}}}\pink\bigstar\\ \\\end{gathered} \\  \\ \begin{gathered}\therefore\:{\underline{\sf{Hence,\; number\:of\;terms\:of\;AP\;are\; {\textsf{\textbf{6}}}.}}}\\\end{gathered}

тнαηк үσυ

||TheUnknownStar||

Similar questions