Math, asked by LohithkumarCB, 2 months ago

The first and last terms of an ap are 1 and 11. If the sum of its terms is 36,then it's the number of terms will be​

Answers

Answered by ShírIey
97

AnswEr :

\frak{ Given}\begin{cases} & \sf{First\: term\;of\;AP,\;(a) = \bf{1}} \\ &\sf{Last\;term \;of \;AP,\;(l) = \bf{11}} \\ & \sf{Sum\:of\;terms\;of\;AP,\: (s_{n}) = \bf{36}} \end{cases}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

¤ For any Arithmetic Progression ( AP ), the sum of nth terms having last term is Given by :

\bigstar\;\underline{\boxed{\pmb{\sf{S_n = \dfrac{n}{2} \bigg\lgroup a + l \bigg\rgroup}}}}\\ \\

where :

  • n = no. of terms
  • a = First Term
  • l = Last Term

\;\;\;\;\bf{\dag}\;{\underline{\frak{Substituting\;the\:given\;values\;in\;formula\;:}}}\\

:\implies\sf S_n = \dfrac{n}{2}\bigg\lgroup a + l\bigg\rgroup = 36\\ \\

:\implies\sf  \dfrac{n}{2} \bigg\lgroup 1 + 11\bigg\rgroup = 36 \\ \\

:\implies\sf  \dfrac{ \:  n}{\cancel{\;2}}  \times  \: \cancel{12}= 36\\ \\

:\implies\sf  6n = 36\\ \\

:\implies\sf n = \cancel\dfrac{36}{6}\\ \\

:\implies\sf\underline{\boxed{\pmb{\frak{\purple{n = 6}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Hence,\; number\:of\;terms\:of\;AP\;are\; {\textsf{\textbf{6}}}.}}}\\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\boxed{\underline{\underline{\bigstar \: \bf\:Formula\:Related\:to\:AP\:\bigstar}}}⠀⠀⠀⠀⠀⠀⠀

\sf (i)\;The\; n^{th}\;term\;of\;an\;AP\; = \; a_n + (n - 1)d⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Sum\;of\;n\;term\;of\;an\;AP\; = \;S_n = \dfrac{n}{2} \bigg\lgroup\sf 2a + (n - 1)d \bigg\rgroup⠀⠀

Answered by MяMαgıcıαη
73

\quad\odot\:\boxed{\sf{\blue{Number\:of\:terms\:(n)\:of\:AP\:=\:\bf{6}}}}

▬▬▬▬▬▬▬▬▬▬▬▬

Explanation :

\underline{\bf \dag{\underline{\red{Given}}}:-}

  • First term of AP, a = 1
  • Last term of AP, l = 11
  • Sum of terms of AP, Sn = 36

\underline{\bf\dag{\underline{\red{To\:Find}}}:-}

  • Number of terms of AP, n = ?

\underline{\bf\dag{\underline{\red{Solution}}}:-}

  • Here, we have first term (a) , last term (l) and sum of all terms of AP (Sn). So, to find out number of terms (n) of AP, Using formula :-

\qquad\qquad\bf\dag\:\bigg\lgroup{\purple{S_{n} = \dfrac{n}{2} (a + l) }}\bigg\rgroup

★ Putting all known values :-

\qquad\leadsto\quad\tt 36 = \dfrac{n}{2} (1 + 11)

\qquad\leadsto\quad\tt 36 = \dfrac{n}{2} (12)

\qquad\leadsto\quad\tt 36 = \dfrac{n}{2}\:\times\:12

\qquad\leadsto\quad\tt 36 = \dfrac{n}{\cancel{2}}\:\times\:\cancel{12}

\qquad\leadsto\quad\tt 36 = n\:\times\:6

\qquad\leadsto\quad\tt \dfrac{36}{6} = n

\qquad\leadsto\quad\tt \dfrac{\cancel{36}}{\cancel{6}} = n

\qquad\leadsto\quad\bf{n = \pink{6}}

Hence,

  • Number of terms (n) of AP = 6

\underline{\bf \dag{\underline{\red{More\:to\:know}}}:-}

  • An arithmetic progression (AP) is a list pf numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.
  • This fixed number is called the common difference of the AP. Remember that it can be positive, negative or zero.

▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions