The first and last terms of an ap are 1 and 12 respectively find (a) the number of terms in the ap (b) the common difference between them if the sum of its terms is (i) 594(ii) 671 (iii) 847 (iv) 1281?
Answers
Answered by
9
Step-by-step explanation:
Let a= first term= 1
d= common difference
L= last term= 12
Tn= № of terms
Sn= sum of the nth terms
Tn= a + (n - 1)d
Sn= ½(n)(a + L)≈ ½(n)(2a + (n - 1)d)
(a)(i) When Sn= 594,
½(n)(1 + 12)= 594
½(n)(13)= 594
13n= 594 × 2
13n= 1188
n= 1188/13
n= 91.3846
(ii) When Sn= 671,
½(n)(1 + 12)= 671
½(n)(13)= 671
13n= 671 × 2
13n= 1342
n= 1342/13
n= 103.2308
(iii) When Sn= 847,
½(n)(1 + 12)= 847
13n= 847 × 2
13n= 1694
n= 1694/13
n= 130.3077
(iv) When Sn= 1281,
½(n)(1 + 12)= 1281
13n= 1281 × 2
13n= 2562
n= 2562/13
n= 197.0769
(b) Recall, ½(n)(2a + (n - 1)d)= ½(n)(a + L)
2a + (n - 1)d= a + L
2a + (n - 1)d= a + L
2a - a + (n - 1)d= L
a + (n - 1)d= L •••> Equation 1
(i) When Sn= 594, n= 91.3846;
1 + (91.3846 - 1)d= 12
90.3846d= 12 - 1
d= 11/90.3846
d= 0.1217
(ii) When Sn= 671, n= 103.2308,
1 + (103.2308 - 1)d= 12
102.2308d= 12 - 1
d= 11/102.2308
d= 0.1076
(iii) When Sn= 847, n= 130.3077,
1 + (130.3077 - 1)d= 12
129.3077d= 12 - 1
d= 11/129.3077
d= 0.0851
(iv) When Sn= 1281, n= 197.0769,
1 + (197.0769 - 1)d= 12
196.0769d= 12 - 1
d= 11/196.0769
d= 0.0561
Hope it helps...✌️✌️
Keep smiling...
If possible thn pls mark as brainliest
Answered by
4
Step-by-step explanation:
Let a= first term= 1
d= common difference
L= last term= 12
Tn= № of terms
Sn= sum of the nth terms
Tn= a + (n - 1)d
Sn= ½(n)(a + L)≈ ½(n)(2a + (n - 1)d)
(a)(i) When Sn= 594,
½(n)(1 + 12)= 594
½(n)(13)= 594
13n= 594 × 2
13n= 1188
n= 1188/13
n= 91.3846
(ii) When Sn= 671,
½(n)(1 + 12)= 671
½(n)(13)= 671
13n= 671 × 2
13n= 1342
n= 1342/13
n= 103.2308
(iii) When Sn= 847,
½(n)(1 + 12)= 847
13n= 847 × 2
13n= 1694
n= 1694/13
n= 130.3077
(iv) When Sn= 1281,
½(n)(1 + 12)= 1281
13n= 1281 × 2
13n= 2562
n= 2562/13
n= 197.0769
hope it helpful..
Similar questions