Math, asked by hotcupid16, 2 months ago

The first and last terms of an AP are 4 and 81 respectively. The common difference is 7.

(a) How many terms are there in the AP
(b) Find the sum?


Don't spam pleach :) ​

Answers

Answered by BadCaption01
19

\huge\bold{Given :)}

  • First term (a) = 4
  • Last tern = 81
  • Common Difference (d) = 7

\:\:\:\:\:\bold{\underline{\sf{\green{By\: Using\: Formula}}}}

\dag\:\:\small\boxed{\sf{\blue{a_{n}\:=\:a +(n\:-\:1)d}}}

\sf\underline\red{Putting~values ~:)}

:\implies\sf\: 81 = 4 + (n - 1)7

:\implies\sf\: 81 = 4 + 7n - 7

:\implies\sf\: 81 = -3 + 7n

:\implies\sf\: 81 + 3 = 7n

:\implies\sf\: 84 = 7n

:\implies\sf\:n = \cancel\dfrac{84}{7}

:\implies\large{\underline{\boxed{\sf{\pink{n\:=\:12}}}}}

\bold{\underline{\sf{There\:are\:12\:Terms\:in\;AP.}}}

\rule{200}2

\sf\underline\red{Now~finding~sum~:)}

\:\:\:\:\:\bold{\underline{\sf{\green{Formula}}}}

\dag\:\;\small\boxed{\sf{\blue{S_{n}\:=\: \frac{n}{2}[2a \:+\:(n\:-\:1)d]}}}

\sf\underline\red{Putting~values ~:)}

:\implies\sf\: \cancel\dfrac{12}{2} [2(4) +(12 - 1)7]

:\implies\sf\:6[ 8 + 77]

:\implies\sf\:6 \times 85

:\implies\large{\underline{\boxed{\sf{\red{S_{n}\:=\: 510}}}}}

\bold{\underline{\sf{Hence,\:Sum\:of\: Given\:AP\:is \:510.}}}

Answered by gunitasharma87
10

Answer:

an=a+(n-1)d

81=4+(n-1)7

81\4=7n-7

21=7n-7

7n=21+7

7n=28

n=4

Similar questions