Math, asked by kamleshconcept, 6 months ago

the first and the fourth term of an ap are 12 and 20 respectively find the 25 term of the AP​

Answers

Answered by Anonymous
9

Answer:

★ 25th term = 76 ★

Step-by-step explanation:

Given:

  • The first and the fourth term of an AP are 12 and 20 respectively.

To find:

  • 25th term of the AP.

Solution:

We know that,

{\boxed{\sf{T_n=a+(n-1)d}}}

Here,

  • a = first term
  • d = common difference

Now find the first and 4th term of the AP.

\implies\sf{T_1=a+(1-1)d}

\implies\sf{12=a.......(i)}

&

\implies\sf{T_4=a+(4-1)d}

\implies\sf{T_4=a+3d}

  • Now put a=12 from eq(i).

\implies\sf{20=12+3d}

\implies\sf{3d=20-12}

\implies\sf{d=8/3}

Now find the 25th term of the AP.

\mapsto\sf{T_{25}=12+(25-1)\times\dfrac{8}{3}}

\mapsto\sf{T_{25}=12+24\times\dfrac{8}{3}}

\mapsto\sf{T_{25}=12+64}

\mapsto\sf{T_{25}=76}

Hence, the 25th term of the AP is 76.

Answered by Anonymous
104

Given:-

  • \sf 1^{st} term of AP = 12
  • \sf 4^{th} term of AP = 20

Find:-

  • \sf 25^{th} term of AP

Solution:-

we, know that

 \huge{\underline{\boxed{\sf a_n = a+(n-1)d}}}

 \pink{\sf where } \footnotesize{\begin{cases} \purple{ \sf a = 1} \\  \red{\sf n = 1 }\\  \orange{\sf a_n = 12} \end{cases}}

\footnotesize{\underline{Substituting\:these\:values\:in\:the\: formula:-}}

\implies\sf a_n = a+(n-1)d \\

\implies\sf 12 = a+(1-1)d \\

\implies\sf 12 = a+(0)d \\

\implies\sf 12 = a+0\\

\implies\sf 12 =a \qquad \bigg \lgroup Equation \: 1 \bigg \rgroup\\

\therefore\sf a = 12 \\

Again, using

\huge{\underline{\boxed{\sf a_n = a+(n-1)d}}}

\green{\sf where } \footnotesize{\begin{cases} \pink{ \sf a = 12} \qquad \lgroup  \sf Equation\:1 \rgroup \\  \purple{\sf n = 4}\\  \pink{\sf a_n = 20} \end{cases}}

\footnotesize{\underline{Substituting\:these\:values\:in\:the\: formula:-}}

\dashrightarrow\sf a_n = a+(n-1)d \\

\dashrightarrow\sf 20 = 12+(4-1)d \\

\dashrightarrow\sf 20 - 12=(3)d \\

\dashrightarrow\sf 8=3d \\

\dashrightarrow\sf  \dfrac{8}{3}=d \\

 \therefore\sf d = \dfrac{8}{3}\\

Using,

 \huge{\underline{\boxed{\sf a_n = a+(n-1)d}}}

\pink{\sf where } \footnotesize{\begin{cases} \green{ \sf a = 12} \qquad \lgroup  \sf Equation\:1 \rgroup \\  \blue{\sf n = 25}\\ \purple{\sf d =  \dfrac{8}{3} } \end{cases}}

\footnotesize{\underline{Substituting\:these\:values\:in\:the\: formula:-}}

\dashrightarrow\sf a_{25} = a+(n-1)d \\

\dashrightarrow\sf a_{25} = 12+(25-1) \times \dfrac{8}{3}  \\

\dashrightarrow\sf a_{25}= 12+(24) \times \dfrac{8}{3}  \\

\dashrightarrow\sf a_{25} = 12+24\times \dfrac{8}{3}  \\

\dashrightarrow\sf a_{25} = 12 +  \dfrac{192}{3}  \\

\dashrightarrow\sf a_{25} = 12+64\\

\dashrightarrow\sf a_{25} = 76\\

 \small{\therefore \underline{\sf 25^{th}\:term\:of\:the\:A.P. \: is \:  76}}

Similar questions