Math, asked by akashsingh7323881818, 10 months ago

The first and the last term of an AP are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum?​

Answers

Answered by ShírIey
92

AnswEr:

\frak{Given}\begin{cases} \sf{First\:Term\:(a)\:=\:17}\\ \sf{Last\:Term\:(L)\;=\; 350} \\ \sf{Common\: Difference\:(d)\:=\; 9}\end{cases}

\rule{150}2

\:\:\:\:\;\:\;\footnotesize\bold{\underline{\underline{\sf{\red{Formula\:For\:the\: Last\:Term\:is \:-}}}}}

\dag\;\:\large{\underline{\boxed{\sf{\purple{l\:=\; a + (n -1)d}}}}}

\large\bold{\underline{\sf{Putting\:Values-}}}

:\implies\sf \: 350 = 17 + (n -1)9

:\implies\sf \: 350 - 17 = (n - 1) 9

:\implies\sf \:333 = (n -1)9

:\implies\sf \:\cancel\dfrac{333}{9} = (n -1)

:\implies\sf \: (n -1) = 37

:\implies\sf \: n = 37 + 1

:\implies\large\boxed{\sf{\purple{n\:=\;38}}}

\small\bold{\underline{\sf{\red{Therefore\:Given\:AP\: Contains\: 38\:Terms.}}}}

\rule{150}2

\large\bold{\underline{\sf{Now\: Finding\: Sum -}}}

:\implies\sf \: S_{n} = \dfrac{n}{2} (a +l)

:\implies\sf \: S_{38} = \dfrac{38}{2}(17 + 350)

:\implies\sf \: 19 \times 367

:\implies\large\boxed{\sf{\purple{6973}}}

\small\bold{\underline{\sf{\red{Sum \:of \: the \:Terms\: of \: the \: Given\: AP\; is \: 6973.}}}}

\rule{150}2

Answered by AaminAftab21
31

Tn=a+(n-1)d

350=17+(n-1)9

333=(n-1)9

n-1=37

N=38

Sum of all terms

Sn=n/2{a+l}

Sn=38/2{17+350}

Sn=19*367

Sn=6973

Similar questions