Math, asked by pruthvipraveen769, 3 days ago

the first fourth trem of an A.P are 1,9,a and b. find the 1) vale of a and 2) 15th of A.P​

Answers

Answered by abhi569
5

Answer:

a = 17 ;  b = 25    ;    T₁₅ = 113

Step-by-step explanation:

First term(T₁) = 1

Common difference = a₂ - a₁ = 9 - 1

                                  = 8

Using Tₙ = T₁ + (n - 1)d

⇒ T₃ = T₁ + (3 - 1)d

⇒ a = 1 + (2)(8)

⇒ a = 1 + 16

a = 17

   Similarly, T₄ = b

⇒ T₄ = T₁ + (4 - 1)d

⇒ b = 1 + (3)(8)

⇒ b = 1 + 24

b = 25

      Using the same procedure for T₁₅

⇒ T₁₅ = T₁ + (15 - 1)d

         = 1 + (14)(8)

         = 1 + 112

         = 113

Answered by kinzal
3

Given :

First term  \sf a_1 = 1

Second term  \sf a_2 = 9

Third term  \sf a_3 = a

Fourth term  \sf a_4 = b

To Find :

(1) Find the value of a and b

(2)  \sf A_{15} term

Explanation :

____________________

(1)

 \longrightarrow In this question We have already  \sf a_1 = 1 and  \sf a_2 = 9

 \longrightarrow So, For common difference =  \sf a_2 - a_1 = 9 - 1 = 8

 \longrightarrow For a

  •  \sf a = a_3

 \longrightarrow And also we had find out that d = 8

So,

  •  \sf d = a_3 - a_2

  •  \sf 8 = a - 9

  •  \sf 8 + 9 = a

  •  \sf \underline{\boxed{a = 17}}

 \longrightarrow Now, again for b

  •  \sf b = a_4

 \longrightarrow And also we had find out that d = 8

So,

  •  \sf d = a_4 - a_3

  •  \sf 8 = b - 17

  •  \sf 8 + 17 = b

  •  \sf \underline{\boxed{b = 25}}

____________________

(2) Now, we have already  \sf a_1 = 1

n = 15 and d = 8

  •  \sf a_{15} = a_1 + (n - 1 ) d

  •  \sf a_{15} = 1 + (15 - 1 ) (8)

  •  \sf a_{15} = 1 + (14)(8)

  •  \sf a_{15} = 1 + 112

  •  \sf \underline{\boxed{a_{15} = 113 }}

____________________

I hope it helps you ❤️✔️

Similar questions