Chemistry, asked by Ataraxia, 3 months ago

The first ionization constant of H_2S is 9.1 × 10^–8. Calculate the concentration of HS^– ion in its 0.1M solution. How will this concentration be affected if the solution is 0.1M in HCl also? If the second dissociation constant of H_2S is 1.2 × 10^–13, calculate the concentration of S^2– under both conditions.

Answers

Answered by Anonymous
37

Answer

Explanation:

1)To calculate [HS − ] in absence of HCl:

Let, [HS − ]=x M.

H 2 S⇌H + +HS −

The initial concentrations of

H 2 S,H + and HS −

are 0.1 M, 0 M and 0 M respectively.

Their final concentrations are 0.1-x M, x M and x M respectively.

K a =

\{ \[H+][HS−]</p><p>}{h2s}

9.1×10−8 \\  \\ = \{x \timesx}{0.1} </p><p></p><p></p><p>

x=9.54×10 { - }^{5}   \\ M=[HS−]</p><p></p><p>

2)To calculate [HS − ] in presence of HCl:

Let [HS − ]=y M.

H 2 S⇌H + +HS −

The initial concentrations of H 2 S,H + and HS −

are 0.1 M, 0 M and 0 M respectively.

Their final concentrations are 0.1-y M, y M and y M respectively.

Also, HCl⇌H + +Cl −

For HCl [H + ]=[Cl − ]=0.1M

K a =

 =  \{hs -  h +  }{h2s}

K a =

 \{y(0.1+y)}{0.1 - y} </p><p></p><p></p><p>

In the denominator, 0.1-y can be approximated to 0.1 and in the numerator, 0.1+y can be approximated to 0.1 as y is very small.

9.1×10 { - }^{8}  \\ = {y\times  0.1}{0.1} </p><p></p><p>

y=9.1×10 { - }^{8} M=[HS−]</p><p></p><p>

3)To calculate [S 2− ] in absence of 0.1 M HCl:

HS − ⇌H  +S  {2}^{ - }

[HS − ]=9.54×10 { - }^{5} M

Let [S 2− ]=X M.

 [H + ]=9.54×10 { - }^{5} M

K a =

= {[H+][S2−]}{hs - } </p><p>

1.2 \times 10 { - }^{13 }  =

 {9.4 \times 10 { - }^{5}  \times x}{9.54  \times 10 { - }^{5} }

X=1.2×10 { - }^{13} M=S { - }^5

4) To calculate [S 2− ] in presence of 0.1 M HCl:

Let [S </p><p> {2}^{ - } </p><p> ]=X </p><p>′</p><p>  M.

[HS−]=9.1×10 { - }^{8} M

[H + ]=0.1 M (from HCl)

ka =

 = {[H+][S {2}^{ - } ]}{hs - } </strong></p><p><strong>[tex] =  \{[H+][S {2}^{ - } ]}{hs - }

1.2×10 { - }^{13} =

 \{0.1×X′</strong></p><p><strong>[tex] \{0.1×X′}{9.1 \times 10 { - }^{8} }

X′=1.092×10 { - }^{19} =[S {2}^{ - } ]

Answered by TheValkyrie
73

Answer:

Concentration of HS⁻ ions when HCl is absent = 9.539 × 10⁻⁵ M.

Concentration of HS⁻ ions when HCl is present = 9.1 × 10⁻⁸ M.

Concentration of S²⁻ when HCl is absent = 1.2 × 10⁻¹³ M.

Concentration of S²⁻ when HCl is present = 1.092 × 10⁻¹⁹M.

Explanation:

Given:

  • The first ionization constant of H₂S = 9.1 × 10⁻⁸
  • Concentration of H₂S = 0.1 M
  • Concentration of HCl = 0.1 M
  • Second dissociation constant of H₂S = 1.2 × 10⁻¹³

To Find:

  • Concentration of HS⁻ ions and S²⁻ ions when HCl is present and when HCl is absent

Solution:

a) Concentration of HS⁻ ions:

i) In the absence of HCl:

Given first dissociation constant K = 9.1 × 10⁻⁸

                    \tt H_2S \rightleftharpoons H^++HS^-

Initial conc:  0.1       0      0

Final conc:  0.1 - x    x      x

That is,

\tt K =\dfrac{[H^+][HS^-]}{[H_2S]}

\implies \tt \dfrac{x\times x}{(0.1-x)}

Here x ≈ 0, hence,

\tt \dfrac{x^2}{0.1} =9.1\times 10^{-8}

\tt x^2=9.1\times 10^{-8}\times 0.1

\tt x=\sqrt{9.1\times 10^{-9}}

\implies \tt 9.539\times 10^{-5}\:M

Hence concentration of HS⁻ ions when HCl is absent is 9.539 × 10⁻⁵ M.

ii) In the presence of HCl,

                   \tt H_2S \rightleftharpoons H^++HS^-

Initial conc:  0.1       0      0

Final conc:  0.1 - y    y      y

Also,

           \tt HCl \rightleftharpoons H^++Cl^-

Conc:  0.1       0.1    0.1

\tt K =\dfrac{[H^+][HS^-]}{[H_2S]}

\tt \implies \dfrac{y\times (0.1+y)}{0.1-y}

y ≈ 0, therefore,

\tt  \dfrac{y\times 0.1}{0.1}=9.1\times 10^{-8}

\tt y=9.1\times 10^{-8}\:M

Hence concentration of HS⁻ ions when HCl is present is 9.1 × 10⁻⁸ M.

b) Concentration of S²⁻ ions,

i) When HCl is absent:

Given that second dissociation constant is 1.2 × 10⁻¹³

                         \tt HS^{-} \rightleftharpoons H^++S^{2-}

Conc: 9.539 × 10⁻⁵   9.539 × 10⁻⁵    z

\tt K=\dfrac{[H^+][S^{2-}]}{[HS^-]}

\implies \tt \dfrac{9.539\times 10^{-5}\times z}{9.539\times 10^{-5}}

\tt z=1.2\times 10^{-13}\: M

Hence concentration of S²⁻ when HCl is absent is 1.2 × 10⁻¹³ M.

ii) When HCl is present:

\tt K=\dfrac{[H^+][S^{2-}]}{[HS^-]}

\tt K = \dfrac{0.1\times [S^{2-}]}{9.1\times 10^{-8}} =1.2\times 10^{-13}

\implies \tt [S^{2-}]=\dfrac{1.2\times 10^{-13}\times 9.1\times 10^{-8}}{0.1}

\implies \tt 1.092\times 10^{-19}\: M

Hence the concentration of S²⁻ when HCl is present is 1.092 × 10⁻¹⁹M.


Atαrαh: Ammmazingg!! :in-love:
Ekaro: Awesomee! :O
amansharma264: Great
TheValkyrie: Thank you all! :D
prince5132: great :)
TheValkyrie: Thank you! :)
Asterinn: Nice!! ( ╹▽╹ )
TheValkyrie: Thank you!
Similar questions