Chemistry, asked by BrainlyHelper, 1 year ago

The first member (H_{\alpha} line) of the Balmer series of hydrogen has a wavelength of 6563\AA . Calculate the wavelength of the second member (H_{\beta} line).

Answers

Answered by phillipinestest
2

"The wavelength of the spectral lines of hydrogen spectrum are given by the formula

\frac { 1 }{ \lambda} \quad =\quad R\left( \frac { 1 }{ { n }_{ f }^{ 2 } } \quad -\quad \frac {1}{{n}_{i}^{2}} \quad\right)

R = Rydberg constant

For Balmer series { n }_{ f } =2\quad and \quad { n }_{ i } = 3

\frac {1}{ {\lambda}_{1}} \quad =\quad R\left( \frac {1}{ 2^{2}} \quad -\quad \frac {1}{ 3^{2}} \quad\right)

\frac {1}{ {\lambda}_{1}} \quad =\quad \frac {5R}{36} \quad ............(i)

For Lyman series {n}_{f} = 1\quad and \quad {n}_{i} = 2

\frac {1}{ { \lambda}_{2}} \quad =\quad R\left( \frac {1 }{1^{2}} \quad -\quad \frac {1}{ 2^{2}} \quad\right)

\frac {1}{ {\lambda}_{2}} \quad =\quad \frac {3R}{4} \quad ............(ii)

From equation (i) and (ii)

\frac { {\lambda}_{1}}{ {\lambda}_{2}} \quad =\quad \frac {5R}{36} \quad \times \quad \frac {4}{3R}

\frac {{\lambda}_{1}}{ {\lambda}_{2}} \quad =\quad \frac {5}{27}

From the given, {\lambda}_{ 1 } = 6563

Substitute the value

{\lambda}_{ 1 }\quad =\quad \frac {5}{27} \quad \times \quad 6563\quad =\quad 1215\quad \AA"

Answered by proudyindian9603
0
Hey mate.....☺✌☺
\huge\blue{1215\:°A}
is the required WAVELENGTH
Similar questions