Chemistry, asked by BrainlyHelper, 1 year ago

The first member (H_{\alpha} line) of the Balmer series of hydrogen has a wavelength of 6563\AA . Calculate the wavelength of the second member (H_{\beta} line).

Answers

Answered by phillipinestest
0

"The wavelength of the spectral lines of hydrogen spectrum are given by the formula

\frac {1}{\lambda} \quad =\quad R\left( \frac {1}{ {n}_{f}^{2}} \quad -\quad \frac {1}{{n}_{ i }^{2}} \quad\right)

R = Rydberg constant


For Balmer series { n }_{ f } = 2 and { n }_{ i } = 3

\frac {1}{ {\lambda}_{1} } \quad =\quad R\left( \frac {1}{ 2^{2}} \quad -\quad \frac {1}{3^{2}} \quad\right)

\frac {1}{ {\lambda}_{1}} \quad =\quad \frac {5R}{36} \quad ............(i)

For Lyman series {n}_{f} = 1 and {n }_{i} = 2

\frac { 1 }{ {\lambda}_{ 2 } } \quad =\quad R\left( \frac { 1 }{ 1^{ 2 } } \quad -\quad \frac {1}{2^{2}} \quad\right)

\frac { 1 }{ {\lambda}_{ 2 } } \quad =\quad \frac { 3R }{ 4 } \quad ............(ii)

From equation (i) and (ii)


\frac { {\lambda}_{ 1 } }{ {\lambda}_{ 2 } } \quad =\quad \frac { 5R }{ 36 } \quad \times \quad \frac { 4 }{ 3R }

\frac { {\lambda}_{ 1 } }{ {\lambda}_{ 2 } } \quad =\quad \frac { 5 }{ 27 }

From the given, {\lambda}_{ 1 } = 6563

Substitute the value


{\lambda}_{ 1 }\quad =\quad \frac { 5 }{ 27 } \quad \times \quad 6563\quad =\quad 1215\quad \AA"

Answered by Harshikesh16726
0

Answer:

Mark please please please please please please please please please please

Attachments:
Similar questions