Math, asked by shinigamisamiya, 3 months ago

The first moment of the distribution about the value 3 is 7. Arithmetic mean of the distribution is​

Answers

Answered by vaibhavysdav
7

Answer:

The first moment of the distribution about the value 5 is 2. Arithmetic mean of the distribution is

(A) 5

(B) 2

(C) 4

(D) 7

Step-by-step explanation:

c is correct

Answered by krishnaanandsynergy
0

Answer:

Here we will find the Arithmetic mean of the distribution using the first moment of the distribution about the value 3 is 7.

Final Answer: Arithmetic mean: 10

Step-by-step explanation:

From the given question, first moment μ₁ = 7. Now we can calculate the mean value. That is,

                     \sum_{i=1}^{n}\frac{ (x_ { i }-3) }{n} = \mu_{1}

                     \[ \sum_{i=1}^{n}\frac{ (x_ { i }-3) }{n} = 7\]

           \sum_{i=1}^{n}\frac{ x_ { i } }{n}-\[ \sum_{i=1}^{n}\frac{3 }{n}  = 7

                   \sum_{i=1}^{n}\frac{ x_ { i } }{n}-\frac{3n }{n}  = 7

                     \sum_{i=1}^{n}\frac{ x_ { i } }{n}-3  = 7

                                \sum\frac{ x_ { i } }{n} = 7+3=10

Arithmetic mean     \sum\frac{ x_ { i } }{n} =10

Similar questions