Math, asked by Shahkumarpal6, 4 months ago

The first second and last term of an AP are a,b,c respectively prove that its sum is (a+c) (b+c-2a)/2(b-a)

Answers

Answered by vinshultyagi
25

\huge\bf\red{Solution:-}

\bf \green{A.P=a,b,...,c}

\bf \red{common \:difference=d}

\bf \purple{a_1=a}

\bf\purple{ a_{2}=a+d=b}

\bf \purple{a_{n}=c(given)}

\Large{\underline{\boxed{\pink{a_{n}=a+(n-1)×d}}}}

\bf \red{a_{n}=a+(n-1)(b-a)}

\bf n=\dfrac{(b+c-2a) }{(b-a)}

\Large{\underline{\boxed{\pink{s_{n}=\dfrac{n}{2}(a+a_{n})}}}}

\bf \implies \dfrac{(b+c-2a) }{2(b-a)}(a+c)

\bf{sum=\dfrac{(b+c-2a) (a+c)}{2(b-a)}}

Similar questions