Hindi, asked by kumarvedansh3, 9 months ago

The first, second and the last terms of an A.P. are 101, 111 and 2001. Find the number of terms.

Answers

Answered by Anonymous
4

hey mate here is ur answer

a=101

d=111-101=10

tn=a+(n-1)d

2001=101+(n-1)10

2001=101+10n-10

2001=91+10n

10n=1910

n=191

hence number of terms =191.

hope it helps.

Answered by BrainlyPopularman
67

{   \bold{ \boxed{ \boxed{ \green{ \huge{ \star \: ANSWER \:  \star}}}}}}

{ \bold{  \huge \: \underline{Given} :  - }} \\  \\ { \bold{ \red{ \implies \: first \:  \: term \:  \: of \:A.P. = 101}}} \\  \\  { \bold{ \red{ \implies \:second \:  \: term \:  \: of \:  \: A.P. = 111}}} \\  \\ { \bold{ \red{ \implies \: last \:  \: term \:  \: of \:  \:A.P. = 2001}}} \\  \\  \\  \\ { \bold{ \underline{ \huge{ To  \:  \: find }} : -  }} \\  \\ { \bold{ \red{ \implies \: total \:  \: number \:  \: of \:  \: terms \:  \: in \:  \: A.P. \: }}} \\  \\  \\  { \bold{ \underline{ \huge{used \:  \: formula} }  : -  }} \\  \\  { \bold{ \red{ \implies{ \boxed{ T_{n} = a + (n - 1)d }} }}}\\  \\    \:  \:  \:  \: { \bold{ \blue{ \: \:  \:  \:  \:  \: . \: where \:  \: a = first \:  \: term }}}\\  \\ { \bold{ \blue{ \: \:  \:  \:  \:  \:  \:  \:  \:  \: .  \:  \: d = common \:  \: difference\:}}}\\ \\ { \bold{ \blue{ \: \:  \:  \:  \:   \:  \:  \:  \:  \: \: .  \: \:n = total \:  \: nuber \:  \: of \:  \: terms}}}\\  \\{ \bold{ \blue{ \: \:  \:  \:  \:   \:  \:  \:  \:  \:  \: . \:T_{n}   = last \:  \: term}}}\\  \\  \\ { \bold{ \boxed{  \boxed{ \huge{ \green{ \bigstar \: solution \:  \bigstar}}}}}} \\  \\

{ \bold{ \red{ \implies \:T _{n} = a + (n - 1)d }}} \\  \\  \\ { \bold{ \red{ \implies \: 2001 = 101 + (n - 1)d}}} \\  \\ { \bold{ \blue{ \:  \:  . \: now \:  \: common \:  \: difference = 111 - 101 = 10}}} \\  \\  \\ { \bold{ \red{ \implies \:2001 = 101 + (n - 1)10 }}} \\   \\ \\ { \bold{ \red{ \implies \: 1900 = (n - 1)10}}} \\  \\ { \bold{ \red{ \implies \: (n - 1) = 190}}} \\  \\  \\ { \bold{ \red{ \implies \:{ \boxed{n = 191}} }}}

Similar questions