Math, asked by dimpli, 1 year ago

the first, second and the last terms of an A.P. are a,b,c respectively.prove that the sum is
(a+c)(b+c-2a)/2(b-a)

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{The first, second and the last terms of an A.P are}

\textsf{a,b,c respectively}

\underline{\textbf{To prove:}}

\mathsf{Sum\;of\;the\;terms=\dfrac{(a+c)(b+c-2a)}{2(b-a)}}

\underline{\textbf{Solution:}}

\mathsf{First\;term,\;t_1=a}

\mathsf{Second\;term,\;t_2=b}

\mathsf{Last\;term,\;l=c}

\implies\mathsf{Common\;difference,\;d=t_2-t_1=b-a}

\mathsf{Number\;of\;terms\;of\;the\;A.P}

\mathsf{=\dfrac{l-a}{d}+1}

\mathsf{=\dfrac{c-a}{b-a}+1}

\mathsf{=\dfrac{c-a+b-a}{b-a}}

\mathsf{=\dfrac{b+c-2a}{b-a}}

\mathsf{Now,}

\textbf{Sum of the terms of the A.P}\bf\,=\dfrac{n}{2}(a+l)

\mathsf{=\dfrac{\dfrac{b+c-2a}{b-a}}{2}(a+c)}

\mathsf{=\dfrac{b+c-2a}{2(b-a)}(a+c)}

\mathsf{=\dfrac{(a+c)(b+c-2a)}{2(b-a)}}

\implies\boxed{\mathsf{Sum\;of\;the\;terms=\dfrac{(a+c)(b+c-2a)}{2(b-a)}}}

Similar questions
Math, 1 year ago