Math, asked by monuamitcool8505, 1 year ago

The first term and the common difference of an AP are 1 and 4 respectively .whose sum is 190 .find the number of terms in that AP

Answers

Answered by aishwarya200412
6

so there are 10 terms in the given AP

Hope it's helpful......

Attachments:
Answered by Anonymous
14

\bf{\Huge{\underline{\boxed{\bf{\green{ANSWER\::}}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}}

The first term and common difference of an arithmetic progression are 1 and 4 respectively. Whose sum is 190.

\bf{\Large{\underline{\bf{To\:find\::}}}}}

The number of terms in that arithmetic progression.

\bf{\Large{\underline{\boxed{\rm{\blue{Explanation\::}}}}}}

We know that formula of the sum of A.P.;

\longmapsto{\bf{\sf{\orange{Sn=\frac{n}{2}[2a+(n-1)d]}}}}}}

\bf{We\:have\begin{cases}\rm{The\:first\:term\:(a)=1}\\ \rm{The\:common\:difference\:(d)=4}\\ \sf{The\:sum\:(Sn)=190}\end{cases}}

Therefore,

\leadsto\rm{Sn\:=\:\frac{n}{2} [2a+(n-1)d]}

\leadsto\rm{190\:=\:\frac{n}{2} [2(1)+(n-1)4]}

\leadsto\rm{190\:=\:\frac{n}{2} [2+4n-4]}

\leadsto\rm{190\:=\:\frac{n}{2} [4n-2]}

\leadsto\rm{380\:=\:n(4n-2)}

\leadsto\rm{380\:=\:4n^{2} -2n}

\leadsto\rm{4n^{2} -2n-380=0}

\leadsto\rm{2(2n^{2} -n)-380=0}

\leadsto\rm{2n^{2} -n-\cancel{\frac{380}{2}} =0}

\leadsto\rm{2n^{2} -n-190=0}

\bf{\Large{\boxed{\sf{Factorization\:Method\::}}}}}}

\leadsto\rm{2n^{2} -20n+19n-190=0}

\leadsto\rm{2n(n-10)+19(n-10)=0}

\leadsto\rm{(n-10)(2n+19)=0}

Now,

\longmapsto\rm{(n-10)=0\:\:\:\:\:\:\:or\:\:\:\:\:(2n+19)=0}

\longmapsto\rm{n\:=\:10\:\:\:\:\:\:\:or\:\:\:\:\:2n=-19}

\longmapsto\rm{n\:=\:10\:\:\:\:\:\:or\:\:\:\:\:n=\cancel{\frac{-19}{2} }}

\longmapsto\rm{n\:=\:10\:\:\:\:\:\:\:or\:\:\:\:\:\:n=-9.5}

We know that negative value isn't acceptable, so;

\sf{\pink{{The \:number\: of \:terms \:in \:that\: A.P. \:is \:n=10}}}

Similar questions